The variety ddpM of de Morgan algebras with double demi-pseudocomplementation consists of those algebras (L; ∧ , ∨ , , , + , 0, 1) of type (2, 2, 1, 1, 1, 0, 0) where (L; ∧ , ∨ , , 0, 1) is a de Morgan alge...The variety ddpM of de Morgan algebras with double demi-pseudocomplementation consists of those algebras (L; ∧ , ∨ , , , + , 0, 1) of type (2, 2, 1, 1, 1, 0, 0) where (L; ∧ , ∨ , , 0, 1) is a de Morgan algebra, (L; ∧ , ∨ , , + , 0, 1) is a double demi-p-lattice and the operations x → x , x → x and x → x + are linked by the identities x = x , x + = x + and x + = x + . In this paper, we characterize congruences on a ddpM-algebra, and give a description of the subdirectly irreducible algebras.展开更多
文摘The variety ddpM of de Morgan algebras with double demi-pseudocomplementation consists of those algebras (L; ∧ , ∨ , , , + , 0, 1) of type (2, 2, 1, 1, 1, 0, 0) where (L; ∧ , ∨ , , 0, 1) is a de Morgan algebra, (L; ∧ , ∨ , , + , 0, 1) is a double demi-p-lattice and the operations x → x , x → x and x → x + are linked by the identities x = x , x + = x + and x + = x + . In this paper, we characterize congruences on a ddpM-algebra, and give a description of the subdirectly irreducible algebras.