Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been ...Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been used to avoid the morbidity and insufficient quantity associated with harvesting autologous bone. The primary objective of this retrospective study was to determine whether, in patients with increased risk of operative nonunion related to multilevel fusion, adding DBM fibers to mineralized bone allograft resulted in better fusion than using allograft alone. The secondary objectives were to evaluate how adding DBM fibers affects functional disability, low back pain, intraoperative blood loss and the nonunion rate. Methods: This retrospective study involved a chart review of consecutive patients who underwent multilevel lumbar spinal fusion and were operated on by a single surgeon. The patients were divided into two groups: 14 patients received mineralized bone allograft (control group) and 14 patients received a combination of mineralized bone allograft and DBM (experimental group). Patients were reviewed at a mean of 16.4 ± 2.2 months after surgery at which point CT scans were analyzed to determine whether fusion had occurred;Oswestry disability index (ODI) and pain were also evaluated. Results: A mean of 5 levels [min 2, max 13] were fused in these patients. Posterolateral fusion as defined by the Lenke classification was not significantly different between groups. The experimental DBM group had a significantly better composite fusion score than the control group (P Discussion: Adding DBM fibers to allograft bone during multilevel posterolateral spinal fusion was safe and produced better composite fusion than using allograft only as an autograft extender.展开更多
Autologous bone graft is considered as the gold standard for all indications for bone grafting procedures but the limited availability and complications in donor site resulted in seeking other options like allografts ...Autologous bone graft is considered as the gold standard for all indications for bone grafting procedures but the limited availability and complications in donor site resulted in seeking other options like allografts andbone graft substitutes. Demineralized bone matrix(DBM) is an allograft product with no quantity limitation. It is an osteoconductive material with osteoinductive capabilities, which vary among different products, depending on donor characteristics and differences in processing of the bone. The purpose of the present review is to provide a critical review of the existing literature concerning the use of DBM products in various procedures in the extremities. Clinical studies describing the use of DBM alone or in combination with other grafting material are available for only a few commercial products. The Level of Evidence of these studies and the resulting Grades of Recommendation are very low. In conclusion, further clinical studies of higher quality are required in order to improve the Recommendation Grades for or against the use of DBM products in bone grafting procedures.展开更多
Spinal fusion remains the gold-standard treatment for several pathological spine conditions. Although, autologous Iliac Crest Bone Grafting is considered the goldstandard graft choice to promote spinal fusion; however...Spinal fusion remains the gold-standard treatment for several pathological spine conditions. Although, autologous Iliac Crest Bone Grafting is considered the goldstandard graft choice to promote spinal fusion; however, it is associated with significant donor site morbidity and a limited graft quantity. Therefore, several bone graft alternatives have been developed, to augment arthrodesis. The purpose of this review is to present the results of clinical studies concerning the use of demineralized bone matrix(DBM), alone or as a composite graft, in the spinal fusion. A critical review of the English-language literature was conducted on Pubmed, using key word "demineralized bone matrix", "DBM", "spinal fusion", and "scoliosis". Results had been restricted to clinical studies. The majority of clinical trials demonstrate satisfactory fusion rates when DBM is employed as a graft extender or a graft enhancer.Limited number of prospective randomized controlled trials(4 studies), have been performed comparing DBM to autologous iliac crest bone graft in spine fusion. The majority of the clinical trials demonstrate comparable efficacy of DBM when it used as a graft extender in combination with autograft, but there is no clinical evidence to support its use as a standalone graft material. Additionally, high level of evidence studies are required, in order to optimize and clarify the indications of its use and the appropriate patient population that will benefit from DBM in spine arthrodesis.展开更多
Matrix stiffness has been demonstrated in many studies to adjust the biological behaviors of mesenchymal stem cells (MSCs). However, in the initial phase of bone restore, MSCs will encounter a hypoxic microenvironment...Matrix stiffness has been demonstrated in many studies to adjust the biological behaviors of mesenchymal stem cells (MSCs). However, in the initial phase of bone restore, MSCs will encounter a hypoxic microenvironment. Studying the connection existing between the matrix stiffness and biological behavior of MSCs under hypoxic condition can better simulate the microenvironment at the prime period of bone repairment. In this work, three-dimensional (3D) decalcified bone scaffolds with diverse stiffness (high stiffness (66.06 ± 27.83) MPa, medium stiffness (26.90 ± 13.16) MPa, and low stiffness (0.67 ± 0.14) MPa) but same microstructure have been prepared by controlling decalcification time. In addition, the decellularized bone scaffold was regard as control group and its stiffness was (230.93 ± 72.65) MPa. The viability, proliferation, infiltration, and osteogenic differentiation of MSCs seeded into these 3D demineralized bone scaffolds were systematically investigated under 100 μM CoCl2-simulated hypoxic and normoxic environments. The results showed that the viability, proliferation, and extracellular matrix (ECM) secretion of MSCs had no significant difference on scaffolds with diverse stiffness but the degree of collagen deposition of MSCs gradually increased with the increase of scaffold stiffness both under normoxia and hypoxia. Compared to normoxia, the viability, proliferation, ECM secretion, vascular endothelial growth factor (VEGF) expression, and osteogenis of MSCs on the scaffolds with the same stiffness were evidently inhibited by hypoxia. Additionally, under hypoxic condition, the expression of VEGF and hypoxia inducible factor 1α(HIF-1α) in MSCs on the low stiffness scaffold was markedly increased comparing to those on other groups. In summary, we found that the low stiffness scaffold can improved the proliferation and osteoginic differentiation of MSCs under hypoxic environment, which may help to explore efficient methods for bone defect repairing.展开更多
The self-made demineralized teeth samples treated with preamble resin to seal or not were observed under electron microscopy and tested microhardness value to show surface structure and hardness of demineralized ename...The self-made demineralized teeth samples treated with preamble resin to seal or not were observed under electron microscopy and tested microhardness value to show surface structure and hardness of demineralized enamel.The experimental results showed that the permeable resin formed longer resin tags on the surface of the enamel and a lot of cracks in the deep part which has a higher microhardness value than ordinary enamel.展开更多
AIM To assess use of demineralized bone matrix(DBM) use in anterior cervical discectomy and fusion(ACDF) in outpatient setting.METHODS One hundred and forty-five patients with prospectively collected data undergoing s...AIM To assess use of demineralized bone matrix(DBM) use in anterior cervical discectomy and fusion(ACDF) in outpatient setting.METHODS One hundred and forty-five patients with prospectively collected data undergoing single and two level ACDF with DBM packed within and anterior to polyetheretherketone(PEEK) cages. Two groups created, Group 1(75) outpatients and control Group 2(70) hospital patients. Prevertebral soft tissue swelling(PVSTS) was measured anterior to C2 and C6 on plain lateral cervical radiographs preoperatively and one week postoperatively and fusion assessed at two years. RESULTS There was no intergroup significance between preoperative and postoperative visual analogue scales(VAS)and neck disability index(NDI) scores between Group 1 and 2. Mean preoperative PVSTS in Group 1 was 4.7 ± 0.2 mm at C2 level and 11.1 ± 0.5 at C6 level compared to Group 2 mean PVSTS of 4.5 ± 0.5 mm and 12.8 ± 0.5, P = 0.172 and 0.127 respectively. There was no radiographic or clinical evidence of adverse reaction noted. In Group 1 mean postoperative PVSTS was 5.5 ± 0.4 mm at C2 and 14.9 ± 0.6 mm at C6 compared Group 2 mean PVSTS was 4.9 ± 0.3 mm at C2 and 14.8 ± 0.5 mm at C6, P = 0.212 and 0.946 respectively. No significant increase in prevertebral soft tissue space at C2 and C6 level demonstrated.CONCLUSION ACDF with adjunct DBM packed PEEK cages showed a statistical significant intragroup improvement in VAS neck pain scores and NDI scores(P = 0.001). There were no reported serious patient complications; post-operative radiographs demonstrated no significant difference in prevertebral space. We conclude that ACDF with DBMpacked PEEK cages can be safely done in an ASC with satisfactory outcomes.展开更多
Bone protein extract is regarded as the new generation of demineralized bone matrix. The aim of this paper is to describe and characterize the properties of demineralized bone matrix and its new generation product in ...Bone protein extract is regarded as the new generation of demineralized bone matrix. The aim of this paper is to describe and characterize the properties of demineralized bone matrix and its new generation product in addition to its application in animal and human studies. Bone protein extract has features of osteoconductivity, osteoinductivity and osteogenicity, which originate from its unique and precise processing. It has exhibited powerful bone formation capacity both in animal experiments and in clinical trials by providing an optimal microenvironment for osteogenesis. Furthermore, not only does it have excellent bio- compatibility, it also has good compatibility with other implant materials, helping it bridge the host and implanted materials. Bone protein extract could be a promising alternative for demineralized bone matrix as a bone graft substitute.展开更多
Demineralized bone matrix(DBM)has been widely used clinically for dental,craniofacial and skeletal bone repair,as an osteoinductive and osteoconductive material.3D printing(3DP)enables the creation of bone tissue engi...Demineralized bone matrix(DBM)has been widely used clinically for dental,craniofacial and skeletal bone repair,as an osteoinductive and osteoconductive material.3D printing(3DP)enables the creation of bone tissue engineering scaffolds with complex geometries and porosity.Photoreactive methacryloylated gelatin nanoparticles(GNP-MAs)3DP inks have been developed,which display gel-like behavior for high print fidelity and are capable of post-printing photocrosslinking for control of scaffold swelling and degradation.Here,novel DBM nanoparticles(DBM-NPs,∼400 nm)were fabricated and characterized prior to incorporation in 3DP inks.The objectives of this study were to determine how these DBM-NPs would influence the printability of composite colloidal 3DP inks,assess the impact of ultraviolet(UV)crosslinking on 3DP scaffold swelling and degradation and evaluate the osteogenic potential of DBM-NP-containing composite colloidal scaffolds.The addition of methacryloylated DBM-NPs(DBM-NP-MAs)to composite colloidal inks(100:0,95:5 and 75:25 GNP-MA:DBM-NP-MA)did not significantly impact the rheological properties associated with printability,such as viscosity and shear recovery or photocrosslinking.UV crosslinking with a UV dosage of 3 J/cm2 directly impacted the rate of 3DP scaffold swelling for all GNP-MA:DBM-NP-MA ratios with an∼40%greater increase in scaffold area and pore area in uncrosslinked versus photocrosslinked scaffolds over 21 days in phosphate-buffered saline(PBS).Likewise,degradation(hydrolytic and enzymatic)over 21 days for all DBM-NP-MA content groups was significantly decreased,∼45%less in PBS and collagenase-containing PBS,in UV-crosslinked versus uncrosslinked groups.The incorporation of DBM-NP-MAs into scaffolds decreased mass loss compared to GNP-MA-only scaffolds during collagenase degradation.An in vitro osteogenic study with bone marrow-derived mesenchymal stem cells demonstrated osteoconductive properties of 3DP scaffolds for the DBM-NP-MA contents examined.The creation of photoreactive DBM-NP-MAs and their application in 3DP provide a platform for the development of ECM-derived colloidal materials and tailored control of biochemical cue presentation with broad tissue engineering applications.展开更多
Background: Caries detection in school oral examinations insufficient accuracy. Objective: To evaluate advantages of introducing quantitative light-induced fluorescence-digital (QLF-D) in school oral examinations. Met...Background: Caries detection in school oral examinations insufficient accuracy. Objective: To evaluate advantages of introducing quantitative light-induced fluorescence-digital (QLF-D) in school oral examinations. Methods: Experiment No. 1. Early demineralized lesions in the upper and lower incisors and canines were visually inspected by three dentists and by QLF-D. The numbers of tooth planes with early demineralized lesions were compared between the methods. Experiment No. 2. Approximal demineralized lesions in molars were assessed by visual inspection, x-ray imaging, and QLF-D. The numbers of tooth planes with demineralized lesions were compared among the methods. Experiment No. 3. Plaque distribution was evaluated by QLF-D and a traditional staining method. The ratio of the diameter of plaque to tooth crown in the tooth axis direction in each method was calculated. The results were evaluated by Pearson’s correlation coefficient analysis and Bland-Altman plot. Results: Experiment No. 1. The three dentists found 0.67 tooth planes on average. QLF-D found 22 tooth planes with early demineralized lesions in the same samples. Experiment No. 2. Fourteen approximal tooth planes of molars were found to have demineralized lesions by x-ray imaging. QLF-D detected 71.4% of the tooth planes out of the 14, whereas visual inspection found 7.1%. Experiment No. 3. The Pearson’s correlation coefficient for the evaluations of plaque distribution between the QLF-D and traditional staining methods was 0.77 (P Conclusion: The results support introduction of QLF-D for use in school dental examinations.展开更多
A major part of world is facing water shortages today. While the world’s population has grown to more than 7.75 billion, the quantity of sweet water has remained the same. The ever increasing use of water by such a l...A major part of world is facing water shortages today. While the world’s population has grown to more than 7.75 billion, the quantity of sweet water has remained the same. The ever increasing use of water by such a large population has resulted in pollution of many water sources. The developing world where a large fraction of total world population is located faces water scarcity in a more severe manner than the developed world. The developed world has managed to control human population and preserve natural water resources more effectively. As a result of this and also due to stabilized population, they face lesser problems for water availability. Indian population stands at 1.386 billion as nowadays. The erratic monsoon rains over last few years have resulted in floods and subsequent water shortages in summer months in major part of the country. A similar situation is faced by many Asian and African countries. The means of recycling and using every possible source of water are always welcome in these countries. Since many of these countries lie in tropical or semitropical zone, the average relative humidity is more than 50% for most of the year. Changing life styles in these countries and spread of information technology based sectors have resulted in a growth spurt in air conditioning facilities. An air conditioner draws heat from surrounding air and cools the premises to desired temperature. During this process, a large amount of moisture in the atmosphere gets condensed and is drained out. There are no efforts made to recover this water in India and neighbouring countries. We have undertaken studies to check the quality of this water and see the feasibility of its use in a decentralized but effective manner. The results show that this water condensate from air conditioners is highly pure, substantial and available almost round the year. This can help in recovering millions of litres of good quality water daily. This water would find uses in industries, laboratories, households and farming. It would also create good business opportunities.展开更多
Studies show that human amniotic cells’ pluripotentency can be influenced to produce chondrocytes and osteocytes through adding demineralized bone (DMB). Objective: This study evaluates the human amniotic membrane (H...Studies show that human amniotic cells’ pluripotentency can be influenced to produce chondrocytes and osteocytes through adding demineralized bone (DMB). Objective: This study evaluates the human amniotic membrane (HAM) mixed with DMB to fill defects in sheep models. We hypothesized this membrane would fill these defects with hyaline-like cartilage with chondrocytes populating the matrix. Design: Six adult sheep were used in this study. One hindquarter knee of each sheep was utilized to make two cartilage defects: one on the femoral condyle and one in the trochlear grove. Three control sheep had unfilled defects. Three sheep received HAM/DMB from a placenta to fill the defects. The membrane was folded so the cellular layer faced the defect and the joint while demineralized bone was placed between the layers. The membranes were fixed to the femur and to the trochlear grove. At six months, the sheep were sacrificed for evaluation. Results: Of the controls, defects did not fill with hyaline or fibrocartilage. In HAM/DMB sheep, 50% of the defects retained the membrane, consistent with other animal models. Membrane defects were examined histologically by a validated scoring system. A strong correlation of little statistical difference between the test and the normal cartilages was observed. The defects that retained membranes had evidence of diffuse chondrocyte-like cell proliferation of stromal matrix similar to hyaline cartilage. Conclusions: HAM/DMB is a potential source of pluripotent cells that can influence chondrogenesis in defects in sheep models. The implications for application in a human model are promising and warrant further study.展开更多
Power Station Chemical Operations Post: At the Palembang power station in Indonesia, these men and women are responsible for inspecting, operating, and using chemicals to cleanwater circulation equipment, producing de...Power Station Chemical Operations Post: At the Palembang power station in Indonesia, these men and women are responsible for inspecting, operating, and using chemicals to cleanwater circulation equipment, producing demineralized water, and inspecting natural gas equipment. Each class is required to make eight half-hour inspection tours, in which the operation parameters(the unit flow meter, the pressure gauge, the pressure, the oil level, and the liquid level) are recorded.展开更多
To investigate how the biofilm three-dimensional(3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glu...To investigate how the biofilm three-dimensional(3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters(microcolonies). Acidic regions(pH<5.5) were found only in the interior of microcolonies,which impedes rapid neutralization(taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization(white spots),rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions(white spot like) on teeth.展开更多
Aim The effect of Galla chinensis on de-/re-mineralization of advanced enamel lesions was investigated by using micro-CT in a prolonged in vitro experiment. Methodology Baseline mineral contents of sound enamels were ...Aim The effect of Galla chinensis on de-/re-mineralization of advanced enamel lesions was investigated by using micro-CT in a prolonged in vitro experiment. Methodology Baseline mineral contents of sound enamels were first analyzed. Then lesions were produced in an acidic buffer solution (2.2 mmol.L-1 Ca(NO3)2, 2.2 mmol-L1 KH2PO4, and pH=4.5) for 21 days, with thrice daily three-minute treatments, divided into four groups: Group A, 4 000 ppm crude aqueous extract of Galla chinensis (GCE); Group B, 4 000 ppm gallic acid; Group C, 1 000 ppm F aq. (as NaF, positive control); Group D, deionized water (negative control). Next, the blocks were immersed in a remineralization solution (1.5 mmol.Lz CaC12, 0.9 mmol.L1 KH2PO4, 0.1 ppm F, and pH=7,0) for 200 days. Mineral loss (ML) in each region of interest (ROI) and integrated mineral loss (IML) of the lesions were calculated (comparing with baseline mineral content of sound enamel) at different time points. Results After 21 days demineralization, fluoride treatment showed a statistically significant demineralization-inhibiting effect among the four groups, and after 200 days of remineralization, mineral content recovery was ordered (lowest to highest) as A=C〈B〈D. Conclusion GCE could slow down the remineralization of enamel in the surface layer and thereby facilitate ion transport into the lesion body. The mechanism of Galla chinensis in enhancing the remineralization of dental caries is different from fluoride.展开更多
The current research was investigated the mechanism of coal demineralization and the effect of leaching parameters on high ash coal and study the characterization of pre and post-treated coal. The two high ash Indian ...The current research was investigated the mechanism of coal demineralization and the effect of leaching parameters on high ash coal and study the characterization of pre and post-treated coal. The two high ash Indian coal selected from Mahanadi Coalfield Limited, Odisha, pulverized to 375, 230 and 180 gm particle size were undergone simultaneous acid and alkali treatment at a different concentration, temperature and time. The percent demineralization was increased with decrease the size of the particle and rises with leaching parameters. The investigation suggested 180 μm particle size offers efficient demineralization for both coals at 30% NaOH and 30% H2SO4 concentration. The alkali leaching leads to obtaining the demineralization 46% and 42% whereas acid treatment resulted in 34% and 32% of the original coal samples. The extent of demineralization was improved the calorific value of coal. Besides, the degree of demineralization was proved from the FTIR, XRF and FESEM-EDX analysis results. FTIR analysis result showed that the peak intensity of mineral band decreased by the leaching effect and the degree of demineralization was significantly obtained to large extent by the X-ray Fluorescence spectrometer; which elucidates major minerals removed from coal by the leaching effect of acid and alkali solution.展开更多
Five Shenfu char samples were prepared from Shenfu raw coal at different temperatures (950, 1100, 1200, 1300 and 1400℃) using a muffle furnace. Demineralization of the char samples was performed by treating them wi...Five Shenfu char samples were prepared from Shenfu raw coal at different temperatures (950, 1100, 1200, 1300 and 1400℃) using a muffle furnace. Demineralization of the char samples was performed by treating them with 10% nitric acid for 10 min in a CEM Discover microwave reactor. The gasification of the chars, and corresponding demineralized chars, in a carbon dioxide (CO2) atmosphere was conducted in a Netzsch STA 409Cl31F tempera- ture-programmed thermogravimetry apparatus. The effects of charring temperature and demineralization on the gasification reactivity of chars were systematically investigated. The results show that a char formed at a lower temperature is more reactive except for demineralized char formed at 1100℃, which is less reactive than char formed at 1200℃. Demineralization decreases the char reactivities toward gasification with CO2 to a small extent.展开更多
The critical issue in developing mature Oxy-Coal Combustion Steam System technology could be the reactivity of deminer-alized coal which,is closely related to its chemical structure.The chemical structures of Liupansh...The critical issue in developing mature Oxy-Coal Combustion Steam System technology could be the reactivity of deminer-alized coal which,is closely related to its chemical structure.The chemical structures of Liupanshui raw coal(LPS-R)and Liupanshui demineralized coal(LPS-D)were analyzed by FTIR and solid-state 13C-NMR.The pyrolysis experiments were carried out by TG,and the pyrolysis kinetics was analyzed by three iso-conversional methods.FTIR and 13C-NMR results suggested that the carbon structure of LPS coal was not altered greatly,while demineralization promoted the maturity of coal and the condensation degree of the aromatic ring,making the chemical structure of coal more stable.The oxygen-containing functional groups with low bond energy were reduced,and the ratio of aromatic carbon with high bond energy was increased,decreasing the pyrolysis reactivity.DTG curve-fitting results revealed that the thermal weight loss of LPS coal mainly came from the cleavage of aliphatic covalent bonds.By pyrolysis kinetics analysis of LPS-R and LPS-D,the apparent activation energies were 76±4 to 463±5 kJ/mol and 84±2 to 758±12 kJ/mol,respectively,under different conversion rates.The reactivity of the demineralized coal was inhibited to some extent,as the apparent activation energy of pyrolysis for LPS-D increased by acid treatment.展开更多
Objective: To determine quantitatively the amount of demineralization and the ability of commercially available products and an experimental cream to inhibit or reverse orthodontic related demineralization.Methods: A ...Objective: To determine quantitatively the amount of demineralization and the ability of commercially available products and an experimental cream to inhibit or reverse orthodontic related demineralization.Methods: A total of 20 patients who were 25–35 years old and having orthodontic treatment for 6–8 months were chosen.Caries risk assessments were done for each patient and ones with "moderate risk" were included.Patients with fixed orthodontic appliances were divided into 4 groups(5 patients each) including one control and 3 study groups.All patients used same toothpaste 2 times a day during the 3 weeks study period.Additional to the toothpaste first study group used MI Paste Plus(GC, Tokyo, Japan), second study group used Remin Pro(Voco, Cuxhaven, Germany) and third group used an experimental remineralizing cream per day for 3 weeks.Maxillary central and lateral incisors of each patient were examined by FluoreCam(Daraza Therametric Technologies, USA) device.The examinations were performed at baseline and at the end of 1st, 2nd and 3rd weeks.Results: According to the FluoreCam measurements the control group showed significant amount of demineralization at the end of 3 weeks, moreover the amount of demineralization has gradually increased in time.At the end of the study all 3 study groups showed significant amount of remineralization and the amount of remineralization for all the 3 study groups has gradually increased in time.However the amount of remineralization for 3rd study group was lesser than the 1st and 2nd study groups.The remineralization amounts for the 1st and 2 nd study groups were determined to be identical.Conclusions: This study demonstrated that demineralization is measurable around orthodontic brackets and the demineralization can be completely inhibited and/or reversed by the use of commercially available remineralization products.展开更多
In this study,the effect of ash removal on Shenfu bituminous coal was investigated.The coal was pretreated by hydrofluoric acid(HF)pickling,and the raw/pretreated coal chars were prepared at 900°C in a fixed bed ...In this study,the effect of ash removal on Shenfu bituminous coal was investigated.The coal was pretreated by hydrofluoric acid(HF)pickling,and the raw/pretreated coal chars were prepared at 900°C in a fixed bed reactor.The structure of coal and char were detected by Fourier transform infrared(FTIR)and Raman spectroscopy.The reactivity was tested in a thermogravimetric analyzer,including coal pyrolysis and char gasification.The reaction kinetics was analyzed through the Coats–Redfern method,master plots,the model-free and model-fitting method.The results show that the HF pickling can remove silicon from coal efficiently,and the macromolecular framework of coal is quite stable according to FTIR.The Raman parameters imply some carbonaceous structure on coal surface changed.For slow pyrolysis of coal,the effect of heating rate is considered.The changes of pyrolysis characteristics and kinetics are insignificant.For char gasification,the reactivity under isothermal and non-isothermal condition are discussed with an emphasis in different residence time of devolatilization process.In kinetic control region(low temperature),the activation energy(Ea)is very close(about 240 kJ/mol)for all chars.With the temperature increases,the reactivity of raw coal char is more easily suffered by diffusion.The random pore model is more suitable for the ash-free coal char,and the char with long residence time has a larger value of structural parameterψand smaller value of pre-exponential factor A.The Ea calculated by model-fitting and model-free method were in good agreement.展开更多
文摘Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been used to avoid the morbidity and insufficient quantity associated with harvesting autologous bone. The primary objective of this retrospective study was to determine whether, in patients with increased risk of operative nonunion related to multilevel fusion, adding DBM fibers to mineralized bone allograft resulted in better fusion than using allograft alone. The secondary objectives were to evaluate how adding DBM fibers affects functional disability, low back pain, intraoperative blood loss and the nonunion rate. Methods: This retrospective study involved a chart review of consecutive patients who underwent multilevel lumbar spinal fusion and were operated on by a single surgeon. The patients were divided into two groups: 14 patients received mineralized bone allograft (control group) and 14 patients received a combination of mineralized bone allograft and DBM (experimental group). Patients were reviewed at a mean of 16.4 ± 2.2 months after surgery at which point CT scans were analyzed to determine whether fusion had occurred;Oswestry disability index (ODI) and pain were also evaluated. Results: A mean of 5 levels [min 2, max 13] were fused in these patients. Posterolateral fusion as defined by the Lenke classification was not significantly different between groups. The experimental DBM group had a significantly better composite fusion score than the control group (P Discussion: Adding DBM fibers to allograft bone during multilevel posterolateral spinal fusion was safe and produced better composite fusion than using allograft only as an autograft extender.
文摘Autologous bone graft is considered as the gold standard for all indications for bone grafting procedures but the limited availability and complications in donor site resulted in seeking other options like allografts andbone graft substitutes. Demineralized bone matrix(DBM) is an allograft product with no quantity limitation. It is an osteoconductive material with osteoinductive capabilities, which vary among different products, depending on donor characteristics and differences in processing of the bone. The purpose of the present review is to provide a critical review of the existing literature concerning the use of DBM products in various procedures in the extremities. Clinical studies describing the use of DBM alone or in combination with other grafting material are available for only a few commercial products. The Level of Evidence of these studies and the resulting Grades of Recommendation are very low. In conclusion, further clinical studies of higher quality are required in order to improve the Recommendation Grades for or against the use of DBM products in bone grafting procedures.
文摘Spinal fusion remains the gold-standard treatment for several pathological spine conditions. Although, autologous Iliac Crest Bone Grafting is considered the goldstandard graft choice to promote spinal fusion; however, it is associated with significant donor site morbidity and a limited graft quantity. Therefore, several bone graft alternatives have been developed, to augment arthrodesis. The purpose of this review is to present the results of clinical studies concerning the use of demineralized bone matrix(DBM), alone or as a composite graft, in the spinal fusion. A critical review of the English-language literature was conducted on Pubmed, using key word "demineralized bone matrix", "DBM", "spinal fusion", and "scoliosis". Results had been restricted to clinical studies. The majority of clinical trials demonstrate satisfactory fusion rates when DBM is employed as a graft extender or a graft enhancer.Limited number of prospective randomized controlled trials(4 studies), have been performed comparing DBM to autologous iliac crest bone graft in spine fusion. The majority of the clinical trials demonstrate comparable efficacy of DBM when it used as a graft extender in combination with autograft, but there is no clinical evidence to support its use as a standalone graft material. Additionally, high level of evidence studies are required, in order to optimize and clarify the indications of its use and the appropriate patient population that will benefit from DBM in spine arthrodesis.
基金the National Natural Science Foundation of China (Grants 11702043 and 11672051 and 11702044)Fundamental Research Funds for the Central Universities (Grant 2018CDQYSG0015).
文摘Matrix stiffness has been demonstrated in many studies to adjust the biological behaviors of mesenchymal stem cells (MSCs). However, in the initial phase of bone restore, MSCs will encounter a hypoxic microenvironment. Studying the connection existing between the matrix stiffness and biological behavior of MSCs under hypoxic condition can better simulate the microenvironment at the prime period of bone repairment. In this work, three-dimensional (3D) decalcified bone scaffolds with diverse stiffness (high stiffness (66.06 ± 27.83) MPa, medium stiffness (26.90 ± 13.16) MPa, and low stiffness (0.67 ± 0.14) MPa) but same microstructure have been prepared by controlling decalcification time. In addition, the decellularized bone scaffold was regard as control group and its stiffness was (230.93 ± 72.65) MPa. The viability, proliferation, infiltration, and osteogenic differentiation of MSCs seeded into these 3D demineralized bone scaffolds were systematically investigated under 100 μM CoCl2-simulated hypoxic and normoxic environments. The results showed that the viability, proliferation, and extracellular matrix (ECM) secretion of MSCs had no significant difference on scaffolds with diverse stiffness but the degree of collagen deposition of MSCs gradually increased with the increase of scaffold stiffness both under normoxia and hypoxia. Compared to normoxia, the viability, proliferation, ECM secretion, vascular endothelial growth factor (VEGF) expression, and osteogenis of MSCs on the scaffolds with the same stiffness were evidently inhibited by hypoxia. Additionally, under hypoxic condition, the expression of VEGF and hypoxia inducible factor 1α(HIF-1α) in MSCs on the low stiffness scaffold was markedly increased comparing to those on other groups. In summary, we found that the low stiffness scaffold can improved the proliferation and osteoginic differentiation of MSCs under hypoxic environment, which may help to explore efficient methods for bone defect repairing.
文摘The self-made demineralized teeth samples treated with preamble resin to seal or not were observed under electron microscopy and tested microhardness value to show surface structure and hardness of demineralized enamel.The experimental results showed that the permeable resin formed longer resin tags on the surface of the enamel and a lot of cracks in the deep part which has a higher microhardness value than ordinary enamel.
文摘AIM To assess use of demineralized bone matrix(DBM) use in anterior cervical discectomy and fusion(ACDF) in outpatient setting.METHODS One hundred and forty-five patients with prospectively collected data undergoing single and two level ACDF with DBM packed within and anterior to polyetheretherketone(PEEK) cages. Two groups created, Group 1(75) outpatients and control Group 2(70) hospital patients. Prevertebral soft tissue swelling(PVSTS) was measured anterior to C2 and C6 on plain lateral cervical radiographs preoperatively and one week postoperatively and fusion assessed at two years. RESULTS There was no intergroup significance between preoperative and postoperative visual analogue scales(VAS)and neck disability index(NDI) scores between Group 1 and 2. Mean preoperative PVSTS in Group 1 was 4.7 ± 0.2 mm at C2 level and 11.1 ± 0.5 at C6 level compared to Group 2 mean PVSTS of 4.5 ± 0.5 mm and 12.8 ± 0.5, P = 0.172 and 0.127 respectively. There was no radiographic or clinical evidence of adverse reaction noted. In Group 1 mean postoperative PVSTS was 5.5 ± 0.4 mm at C2 and 14.9 ± 0.6 mm at C6 compared Group 2 mean PVSTS was 4.9 ± 0.3 mm at C2 and 14.8 ± 0.5 mm at C6, P = 0.212 and 0.946 respectively. No significant increase in prevertebral soft tissue space at C2 and C6 level demonstrated.CONCLUSION ACDF with adjunct DBM packed PEEK cages showed a statistical significant intragroup improvement in VAS neck pain scores and NDI scores(P = 0.001). There were no reported serious patient complications; post-operative radiographs demonstrated no significant difference in prevertebral space. We conclude that ACDF with DBMpacked PEEK cages can be safely done in an ASC with satisfactory outcomes.
基金supported by the National Basic Research Program of China (Grant No. 2012CB619105)the National Natural Science Foundation of China (Grant Nos. 30571892, 81071512 and u0732001)the Fabrikant Mads Clausens Foundation of Denmark
文摘Bone protein extract is regarded as the new generation of demineralized bone matrix. The aim of this paper is to describe and characterize the properties of demineralized bone matrix and its new generation product in addition to its application in animal and human studies. Bone protein extract has features of osteoconductivity, osteoinductivity and osteogenicity, which originate from its unique and precise processing. It has exhibited powerful bone formation capacity both in animal experiments and in clinical trials by providing an optimal microenvironment for osteogenesis. Furthermore, not only does it have excellent bio- compatibility, it also has good compatibility with other implant materials, helping it bridge the host and implanted materials. Bone protein extract could be a promising alternative for demineralized bone matrix as a bone graft substitute.
基金support from a National Science Foundation Graduate Research Fellowship(M.R.P.,E.J.,E.Y.J.)the National Institutes of Health(F31 DE030333,K.J.H.+3 种基金P41 EB023833,A.G.M.)the Baylor College of Medicine Medical Science Training Program(K.J.H.),the Scientific and Technological Research Council of Turkey International Research Fellowship Programme for PhD Students(H.O.)a Rubicon Postdoctoral Fellowship from the Dutch Research Council(NWOProject No.019.182 EN.004)(M.D.).
文摘Demineralized bone matrix(DBM)has been widely used clinically for dental,craniofacial and skeletal bone repair,as an osteoinductive and osteoconductive material.3D printing(3DP)enables the creation of bone tissue engineering scaffolds with complex geometries and porosity.Photoreactive methacryloylated gelatin nanoparticles(GNP-MAs)3DP inks have been developed,which display gel-like behavior for high print fidelity and are capable of post-printing photocrosslinking for control of scaffold swelling and degradation.Here,novel DBM nanoparticles(DBM-NPs,∼400 nm)were fabricated and characterized prior to incorporation in 3DP inks.The objectives of this study were to determine how these DBM-NPs would influence the printability of composite colloidal 3DP inks,assess the impact of ultraviolet(UV)crosslinking on 3DP scaffold swelling and degradation and evaluate the osteogenic potential of DBM-NP-containing composite colloidal scaffolds.The addition of methacryloylated DBM-NPs(DBM-NP-MAs)to composite colloidal inks(100:0,95:5 and 75:25 GNP-MA:DBM-NP-MA)did not significantly impact the rheological properties associated with printability,such as viscosity and shear recovery or photocrosslinking.UV crosslinking with a UV dosage of 3 J/cm2 directly impacted the rate of 3DP scaffold swelling for all GNP-MA:DBM-NP-MA ratios with an∼40%greater increase in scaffold area and pore area in uncrosslinked versus photocrosslinked scaffolds over 21 days in phosphate-buffered saline(PBS).Likewise,degradation(hydrolytic and enzymatic)over 21 days for all DBM-NP-MA content groups was significantly decreased,∼45%less in PBS and collagenase-containing PBS,in UV-crosslinked versus uncrosslinked groups.The incorporation of DBM-NP-MAs into scaffolds decreased mass loss compared to GNP-MA-only scaffolds during collagenase degradation.An in vitro osteogenic study with bone marrow-derived mesenchymal stem cells demonstrated osteoconductive properties of 3DP scaffolds for the DBM-NP-MA contents examined.The creation of photoreactive DBM-NP-MAs and their application in 3DP provide a platform for the development of ECM-derived colloidal materials and tailored control of biochemical cue presentation with broad tissue engineering applications.
文摘Background: Caries detection in school oral examinations insufficient accuracy. Objective: To evaluate advantages of introducing quantitative light-induced fluorescence-digital (QLF-D) in school oral examinations. Methods: Experiment No. 1. Early demineralized lesions in the upper and lower incisors and canines were visually inspected by three dentists and by QLF-D. The numbers of tooth planes with early demineralized lesions were compared between the methods. Experiment No. 2. Approximal demineralized lesions in molars were assessed by visual inspection, x-ray imaging, and QLF-D. The numbers of tooth planes with demineralized lesions were compared among the methods. Experiment No. 3. Plaque distribution was evaluated by QLF-D and a traditional staining method. The ratio of the diameter of plaque to tooth crown in the tooth axis direction in each method was calculated. The results were evaluated by Pearson’s correlation coefficient analysis and Bland-Altman plot. Results: Experiment No. 1. The three dentists found 0.67 tooth planes on average. QLF-D found 22 tooth planes with early demineralized lesions in the same samples. Experiment No. 2. Fourteen approximal tooth planes of molars were found to have demineralized lesions by x-ray imaging. QLF-D detected 71.4% of the tooth planes out of the 14, whereas visual inspection found 7.1%. Experiment No. 3. The Pearson’s correlation coefficient for the evaluations of plaque distribution between the QLF-D and traditional staining methods was 0.77 (P Conclusion: The results support introduction of QLF-D for use in school dental examinations.
文摘A major part of world is facing water shortages today. While the world’s population has grown to more than 7.75 billion, the quantity of sweet water has remained the same. The ever increasing use of water by such a large population has resulted in pollution of many water sources. The developing world where a large fraction of total world population is located faces water scarcity in a more severe manner than the developed world. The developed world has managed to control human population and preserve natural water resources more effectively. As a result of this and also due to stabilized population, they face lesser problems for water availability. Indian population stands at 1.386 billion as nowadays. The erratic monsoon rains over last few years have resulted in floods and subsequent water shortages in summer months in major part of the country. A similar situation is faced by many Asian and African countries. The means of recycling and using every possible source of water are always welcome in these countries. Since many of these countries lie in tropical or semitropical zone, the average relative humidity is more than 50% for most of the year. Changing life styles in these countries and spread of information technology based sectors have resulted in a growth spurt in air conditioning facilities. An air conditioner draws heat from surrounding air and cools the premises to desired temperature. During this process, a large amount of moisture in the atmosphere gets condensed and is drained out. There are no efforts made to recover this water in India and neighbouring countries. We have undertaken studies to check the quality of this water and see the feasibility of its use in a decentralized but effective manner. The results show that this water condensate from air conditioners is highly pure, substantial and available almost round the year. This can help in recovering millions of litres of good quality water daily. This water would find uses in industries, laboratories, households and farming. It would also create good business opportunities.
文摘Studies show that human amniotic cells’ pluripotentency can be influenced to produce chondrocytes and osteocytes through adding demineralized bone (DMB). Objective: This study evaluates the human amniotic membrane (HAM) mixed with DMB to fill defects in sheep models. We hypothesized this membrane would fill these defects with hyaline-like cartilage with chondrocytes populating the matrix. Design: Six adult sheep were used in this study. One hindquarter knee of each sheep was utilized to make two cartilage defects: one on the femoral condyle and one in the trochlear grove. Three control sheep had unfilled defects. Three sheep received HAM/DMB from a placenta to fill the defects. The membrane was folded so the cellular layer faced the defect and the joint while demineralized bone was placed between the layers. The membranes were fixed to the femur and to the trochlear grove. At six months, the sheep were sacrificed for evaluation. Results: Of the controls, defects did not fill with hyaline or fibrocartilage. In HAM/DMB sheep, 50% of the defects retained the membrane, consistent with other animal models. Membrane defects were examined histologically by a validated scoring system. A strong correlation of little statistical difference between the test and the normal cartilages was observed. The defects that retained membranes had evidence of diffuse chondrocyte-like cell proliferation of stromal matrix similar to hyaline cartilage. Conclusions: HAM/DMB is a potential source of pluripotent cells that can influence chondrogenesis in defects in sheep models. The implications for application in a human model are promising and warrant further study.
文摘Power Station Chemical Operations Post: At the Palembang power station in Indonesia, these men and women are responsible for inspecting, operating, and using chemicals to cleanwater circulation equipment, producing demineralized water, and inspecting natural gas equipment. Each class is required to make eight half-hour inspection tours, in which the operation parameters(the unit flow meter, the pressure gauge, the pressure, the oil level, and the liquid level) are recorded.
基金supported in part by the National Institute for Dental and Craniofacial Research (NIDCR) grants DE025728 (GH),DE18023 (HK) and DE25220 (HK)
文摘To investigate how the biofilm three-dimensional(3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters(microcolonies). Acidic regions(pH<5.5) were found only in the interior of microcolonies,which impedes rapid neutralization(taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization(white spots),rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions(white spot like) on teeth.
文摘Aim The effect of Galla chinensis on de-/re-mineralization of advanced enamel lesions was investigated by using micro-CT in a prolonged in vitro experiment. Methodology Baseline mineral contents of sound enamels were first analyzed. Then lesions were produced in an acidic buffer solution (2.2 mmol.L-1 Ca(NO3)2, 2.2 mmol-L1 KH2PO4, and pH=4.5) for 21 days, with thrice daily three-minute treatments, divided into four groups: Group A, 4 000 ppm crude aqueous extract of Galla chinensis (GCE); Group B, 4 000 ppm gallic acid; Group C, 1 000 ppm F aq. (as NaF, positive control); Group D, deionized water (negative control). Next, the blocks were immersed in a remineralization solution (1.5 mmol.Lz CaC12, 0.9 mmol.L1 KH2PO4, 0.1 ppm F, and pH=7,0) for 200 days. Mineral loss (ML) in each region of interest (ROI) and integrated mineral loss (IML) of the lesions were calculated (comparing with baseline mineral content of sound enamel) at different time points. Results After 21 days demineralization, fluoride treatment showed a statistically significant demineralization-inhibiting effect among the four groups, and after 200 days of remineralization, mineral content recovery was ordered (lowest to highest) as A=C〈B〈D. Conclusion GCE could slow down the remineralization of enamel in the surface layer and thereby facilitate ion transport into the lesion body. The mechanism of Galla chinensis in enhancing the remineralization of dental caries is different from fluoride.
文摘The current research was investigated the mechanism of coal demineralization and the effect of leaching parameters on high ash coal and study the characterization of pre and post-treated coal. The two high ash Indian coal selected from Mahanadi Coalfield Limited, Odisha, pulverized to 375, 230 and 180 gm particle size were undergone simultaneous acid and alkali treatment at a different concentration, temperature and time. The percent demineralization was increased with decrease the size of the particle and rises with leaching parameters. The investigation suggested 180 μm particle size offers efficient demineralization for both coals at 30% NaOH and 30% H2SO4 concentration. The alkali leaching leads to obtaining the demineralization 46% and 42% whereas acid treatment resulted in 34% and 32% of the original coal samples. The extent of demineralization was improved the calorific value of coal. Besides, the degree of demineralization was proved from the FTIR, XRF and FESEM-EDX analysis results. FTIR analysis result showed that the peak intensity of mineral band decreased by the leaching effect and the degree of demineralization was significantly obtained to large extent by the X-ray Fluorescence spectrometer; which elucidates major minerals removed from coal by the leaching effect of acid and alkali solution.
基金Projects 2004CB217704 supported by the Special Fund for Major State Basic Research Project, 104031 by the Key Project of Chinese Ministry of Education JHB05-33 by the Program of the Universities in Jiangsu Province for Development of High-Tech Industries
文摘Five Shenfu char samples were prepared from Shenfu raw coal at different temperatures (950, 1100, 1200, 1300 and 1400℃) using a muffle furnace. Demineralization of the char samples was performed by treating them with 10% nitric acid for 10 min in a CEM Discover microwave reactor. The gasification of the chars, and corresponding demineralized chars, in a carbon dioxide (CO2) atmosphere was conducted in a Netzsch STA 409Cl31F tempera- ture-programmed thermogravimetry apparatus. The effects of charring temperature and demineralization on the gasification reactivity of chars were systematically investigated. The results show that a char formed at a lower temperature is more reactive except for demineralized char formed at 1100℃, which is less reactive than char formed at 1200℃. Demineralization decreases the char reactivities toward gasification with CO2 to a small extent.
基金supported by the National Natural Science Foundation of China (51536002)the Fundamental Research Funds for the Central Universities (2015QNA12)the Open Sharing Fund for the Large-scale Instruments and Equipments of China University of Mining and Technology (CUMT).
文摘The critical issue in developing mature Oxy-Coal Combustion Steam System technology could be the reactivity of deminer-alized coal which,is closely related to its chemical structure.The chemical structures of Liupanshui raw coal(LPS-R)and Liupanshui demineralized coal(LPS-D)were analyzed by FTIR and solid-state 13C-NMR.The pyrolysis experiments were carried out by TG,and the pyrolysis kinetics was analyzed by three iso-conversional methods.FTIR and 13C-NMR results suggested that the carbon structure of LPS coal was not altered greatly,while demineralization promoted the maturity of coal and the condensation degree of the aromatic ring,making the chemical structure of coal more stable.The oxygen-containing functional groups with low bond energy were reduced,and the ratio of aromatic carbon with high bond energy was increased,decreasing the pyrolysis reactivity.DTG curve-fitting results revealed that the thermal weight loss of LPS coal mainly came from the cleavage of aliphatic covalent bonds.By pyrolysis kinetics analysis of LPS-R and LPS-D,the apparent activation energies were 76±4 to 463±5 kJ/mol and 84±2 to 758±12 kJ/mol,respectively,under different conversion rates.The reactivity of the demineralized coal was inhibited to some extent,as the apparent activation energy of pyrolysis for LPS-D increased by acid treatment.
文摘Objective: To determine quantitatively the amount of demineralization and the ability of commercially available products and an experimental cream to inhibit or reverse orthodontic related demineralization.Methods: A total of 20 patients who were 25–35 years old and having orthodontic treatment for 6–8 months were chosen.Caries risk assessments were done for each patient and ones with "moderate risk" were included.Patients with fixed orthodontic appliances were divided into 4 groups(5 patients each) including one control and 3 study groups.All patients used same toothpaste 2 times a day during the 3 weeks study period.Additional to the toothpaste first study group used MI Paste Plus(GC, Tokyo, Japan), second study group used Remin Pro(Voco, Cuxhaven, Germany) and third group used an experimental remineralizing cream per day for 3 weeks.Maxillary central and lateral incisors of each patient were examined by FluoreCam(Daraza Therametric Technologies, USA) device.The examinations were performed at baseline and at the end of 1st, 2nd and 3rd weeks.Results: According to the FluoreCam measurements the control group showed significant amount of demineralization at the end of 3 weeks, moreover the amount of demineralization has gradually increased in time.At the end of the study all 3 study groups showed significant amount of remineralization and the amount of remineralization for all the 3 study groups has gradually increased in time.However the amount of remineralization for 3rd study group was lesser than the 1st and 2nd study groups.The remineralization amounts for the 1st and 2 nd study groups were determined to be identical.Conclusions: This study demonstrated that demineralization is measurable around orthodontic brackets and the demineralization can be completely inhibited and/or reversed by the use of commercially available remineralization products.
基金This work was supported by National Key R&D Program of China(2017YFB0602601)National Natural Science Foundation of China(21878093).
文摘In this study,the effect of ash removal on Shenfu bituminous coal was investigated.The coal was pretreated by hydrofluoric acid(HF)pickling,and the raw/pretreated coal chars were prepared at 900°C in a fixed bed reactor.The structure of coal and char were detected by Fourier transform infrared(FTIR)and Raman spectroscopy.The reactivity was tested in a thermogravimetric analyzer,including coal pyrolysis and char gasification.The reaction kinetics was analyzed through the Coats–Redfern method,master plots,the model-free and model-fitting method.The results show that the HF pickling can remove silicon from coal efficiently,and the macromolecular framework of coal is quite stable according to FTIR.The Raman parameters imply some carbonaceous structure on coal surface changed.For slow pyrolysis of coal,the effect of heating rate is considered.The changes of pyrolysis characteristics and kinetics are insignificant.For char gasification,the reactivity under isothermal and non-isothermal condition are discussed with an emphasis in different residence time of devolatilization process.In kinetic control region(low temperature),the activation energy(Ea)is very close(about 240 kJ/mol)for all chars.With the temperature increases,the reactivity of raw coal char is more easily suffered by diffusion.The random pore model is more suitable for the ash-free coal char,and the char with long residence time has a larger value of structural parameterψand smaller value of pre-exponential factor A.The Ea calculated by model-fitting and model-free method were in good agreement.