Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been ...Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been used to avoid the morbidity and insufficient quantity associated with harvesting autologous bone. The primary objective of this retrospective study was to determine whether, in patients with increased risk of operative nonunion related to multilevel fusion, adding DBM fibers to mineralized bone allograft resulted in better fusion than using allograft alone. The secondary objectives were to evaluate how adding DBM fibers affects functional disability, low back pain, intraoperative blood loss and the nonunion rate. Methods: This retrospective study involved a chart review of consecutive patients who underwent multilevel lumbar spinal fusion and were operated on by a single surgeon. The patients were divided into two groups: 14 patients received mineralized bone allograft (control group) and 14 patients received a combination of mineralized bone allograft and DBM (experimental group). Patients were reviewed at a mean of 16.4 ± 2.2 months after surgery at which point CT scans were analyzed to determine whether fusion had occurred;Oswestry disability index (ODI) and pain were also evaluated. Results: A mean of 5 levels [min 2, max 13] were fused in these patients. Posterolateral fusion as defined by the Lenke classification was not significantly different between groups. The experimental DBM group had a significantly better composite fusion score than the control group (P Discussion: Adding DBM fibers to allograft bone during multilevel posterolateral spinal fusion was safe and produced better composite fusion than using allograft only as an autograft extender.展开更多
Bone protein extract is regarded as the new generation of demineralized bone matrix. The aim of this paper is to describe and characterize the properties of demineralized bone matrix and its new generation product in ...Bone protein extract is regarded as the new generation of demineralized bone matrix. The aim of this paper is to describe and characterize the properties of demineralized bone matrix and its new generation product in addition to its application in animal and human studies. Bone protein extract has features of osteoconductivity, osteoinductivity and osteogenicity, which originate from its unique and precise processing. It has exhibited powerful bone formation capacity both in animal experiments and in clinical trials by providing an optimal microenvironment for osteogenesis. Furthermore, not only does it have excellent bio- compatibility, it also has good compatibility with other implant materials, helping it bridge the host and implanted materials. Bone protein extract could be a promising alternative for demineralized bone matrix as a bone graft substitute.展开更多
Demineralized bone matrix(DBM)has been widely used clinically for dental,craniofacial and skeletal bone repair,as an osteoinductive and osteoconductive material.3D printing(3DP)enables the creation of bone tissue engi...Demineralized bone matrix(DBM)has been widely used clinically for dental,craniofacial and skeletal bone repair,as an osteoinductive and osteoconductive material.3D printing(3DP)enables the creation of bone tissue engineering scaffolds with complex geometries and porosity.Photoreactive methacryloylated gelatin nanoparticles(GNP-MAs)3DP inks have been developed,which display gel-like behavior for high print fidelity and are capable of post-printing photocrosslinking for control of scaffold swelling and degradation.Here,novel DBM nanoparticles(DBM-NPs,∼400 nm)were fabricated and characterized prior to incorporation in 3DP inks.The objectives of this study were to determine how these DBM-NPs would influence the printability of composite colloidal 3DP inks,assess the impact of ultraviolet(UV)crosslinking on 3DP scaffold swelling and degradation and evaluate the osteogenic potential of DBM-NP-containing composite colloidal scaffolds.The addition of methacryloylated DBM-NPs(DBM-NP-MAs)to composite colloidal inks(100:0,95:5 and 75:25 GNP-MA:DBM-NP-MA)did not significantly impact the rheological properties associated with printability,such as viscosity and shear recovery or photocrosslinking.UV crosslinking with a UV dosage of 3 J/cm2 directly impacted the rate of 3DP scaffold swelling for all GNP-MA:DBM-NP-MA ratios with an∼40%greater increase in scaffold area and pore area in uncrosslinked versus photocrosslinked scaffolds over 21 days in phosphate-buffered saline(PBS).Likewise,degradation(hydrolytic and enzymatic)over 21 days for all DBM-NP-MA content groups was significantly decreased,∼45%less in PBS and collagenase-containing PBS,in UV-crosslinked versus uncrosslinked groups.The incorporation of DBM-NP-MAs into scaffolds decreased mass loss compared to GNP-MA-only scaffolds during collagenase degradation.An in vitro osteogenic study with bone marrow-derived mesenchymal stem cells demonstrated osteoconductive properties of 3DP scaffolds for the DBM-NP-MA contents examined.The creation of photoreactive DBM-NP-MAs and their application in 3DP provide a platform for the development of ECM-derived colloidal materials and tailored control of biochemical cue presentation with broad tissue engineering applications.展开更多
Adolescent idiopathic scoliosis (AIS) is one of the most prevalent diseases among teenagers, with an incidence rate of 1-3% worldwide, and at least 0.02% of patients require surgical treatment. The "gold standard"...Adolescent idiopathic scoliosis (AIS) is one of the most prevalent diseases among teenagers, with an incidence rate of 1-3% worldwide, and at least 0.02% of patients require surgical treatment. The "gold standard" procedure is instrumentation and fusion of 10 or more vertebrae with forceful correction of the deformity.Although autogenous bone grafts are the "gold standard" for spine fusion, significant progress has been made in discovering bone graft alternatives, including freeze-dried allograft, demineralized bone matrix (DBM), triosite ceramics, and bone marrow aspirate (BMA), which have been used as substitutes for iliac crest in AIS surgery.展开更多
文摘Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been used to avoid the morbidity and insufficient quantity associated with harvesting autologous bone. The primary objective of this retrospective study was to determine whether, in patients with increased risk of operative nonunion related to multilevel fusion, adding DBM fibers to mineralized bone allograft resulted in better fusion than using allograft alone. The secondary objectives were to evaluate how adding DBM fibers affects functional disability, low back pain, intraoperative blood loss and the nonunion rate. Methods: This retrospective study involved a chart review of consecutive patients who underwent multilevel lumbar spinal fusion and were operated on by a single surgeon. The patients were divided into two groups: 14 patients received mineralized bone allograft (control group) and 14 patients received a combination of mineralized bone allograft and DBM (experimental group). Patients were reviewed at a mean of 16.4 ± 2.2 months after surgery at which point CT scans were analyzed to determine whether fusion had occurred;Oswestry disability index (ODI) and pain were also evaluated. Results: A mean of 5 levels [min 2, max 13] were fused in these patients. Posterolateral fusion as defined by the Lenke classification was not significantly different between groups. The experimental DBM group had a significantly better composite fusion score than the control group (P Discussion: Adding DBM fibers to allograft bone during multilevel posterolateral spinal fusion was safe and produced better composite fusion than using allograft only as an autograft extender.
基金supported by the National Basic Research Program of China (Grant No. 2012CB619105)the National Natural Science Foundation of China (Grant Nos. 30571892, 81071512 and u0732001)the Fabrikant Mads Clausens Foundation of Denmark
文摘Bone protein extract is regarded as the new generation of demineralized bone matrix. The aim of this paper is to describe and characterize the properties of demineralized bone matrix and its new generation product in addition to its application in animal and human studies. Bone protein extract has features of osteoconductivity, osteoinductivity and osteogenicity, which originate from its unique and precise processing. It has exhibited powerful bone formation capacity both in animal experiments and in clinical trials by providing an optimal microenvironment for osteogenesis. Furthermore, not only does it have excellent bio- compatibility, it also has good compatibility with other implant materials, helping it bridge the host and implanted materials. Bone protein extract could be a promising alternative for demineralized bone matrix as a bone graft substitute.
基金support from a National Science Foundation Graduate Research Fellowship(M.R.P.,E.J.,E.Y.J.)the National Institutes of Health(F31 DE030333,K.J.H.+3 种基金P41 EB023833,A.G.M.)the Baylor College of Medicine Medical Science Training Program(K.J.H.),the Scientific and Technological Research Council of Turkey International Research Fellowship Programme for PhD Students(H.O.)a Rubicon Postdoctoral Fellowship from the Dutch Research Council(NWOProject No.019.182 EN.004)(M.D.).
文摘Demineralized bone matrix(DBM)has been widely used clinically for dental,craniofacial and skeletal bone repair,as an osteoinductive and osteoconductive material.3D printing(3DP)enables the creation of bone tissue engineering scaffolds with complex geometries and porosity.Photoreactive methacryloylated gelatin nanoparticles(GNP-MAs)3DP inks have been developed,which display gel-like behavior for high print fidelity and are capable of post-printing photocrosslinking for control of scaffold swelling and degradation.Here,novel DBM nanoparticles(DBM-NPs,∼400 nm)were fabricated and characterized prior to incorporation in 3DP inks.The objectives of this study were to determine how these DBM-NPs would influence the printability of composite colloidal 3DP inks,assess the impact of ultraviolet(UV)crosslinking on 3DP scaffold swelling and degradation and evaluate the osteogenic potential of DBM-NP-containing composite colloidal scaffolds.The addition of methacryloylated DBM-NPs(DBM-NP-MAs)to composite colloidal inks(100:0,95:5 and 75:25 GNP-MA:DBM-NP-MA)did not significantly impact the rheological properties associated with printability,such as viscosity and shear recovery or photocrosslinking.UV crosslinking with a UV dosage of 3 J/cm2 directly impacted the rate of 3DP scaffold swelling for all GNP-MA:DBM-NP-MA ratios with an∼40%greater increase in scaffold area and pore area in uncrosslinked versus photocrosslinked scaffolds over 21 days in phosphate-buffered saline(PBS).Likewise,degradation(hydrolytic and enzymatic)over 21 days for all DBM-NP-MA content groups was significantly decreased,∼45%less in PBS and collagenase-containing PBS,in UV-crosslinked versus uncrosslinked groups.The incorporation of DBM-NP-MAs into scaffolds decreased mass loss compared to GNP-MA-only scaffolds during collagenase degradation.An in vitro osteogenic study with bone marrow-derived mesenchymal stem cells demonstrated osteoconductive properties of 3DP scaffolds for the DBM-NP-MA contents examined.The creation of photoreactive DBM-NP-MAs and their application in 3DP provide a platform for the development of ECM-derived colloidal materials and tailored control of biochemical cue presentation with broad tissue engineering applications.
基金grants from the National Natural Science Foundation of China,Shanghai Natural Science Foundation,Youth Project of Shanghai Municipal Health and Family Planning Commission
文摘Adolescent idiopathic scoliosis (AIS) is one of the most prevalent diseases among teenagers, with an incidence rate of 1-3% worldwide, and at least 0.02% of patients require surgical treatment. The "gold standard" procedure is instrumentation and fusion of 10 or more vertebrae with forceful correction of the deformity.Although autogenous bone grafts are the "gold standard" for spine fusion, significant progress has been made in discovering bone graft alternatives, including freeze-dried allograft, demineralized bone matrix (DBM), triosite ceramics, and bone marrow aspirate (BMA), which have been used as substitutes for iliac crest in AIS surgery.