An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence acc...An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.展开更多
Transmembrane proteins are some special and important proteins in cells. Because of their importance and specificity, the prediction of the transmembrane regions has very important theoretical and practical significan...Transmembrane proteins are some special and important proteins in cells. Because of their importance and specificity, the prediction of the transmembrane regions has very important theoretical and practical significance. At present, the prediction methods are mainly based on the physicochemical property and statistic analysis of amino acids. However, these methods are suitable for some environments but inapplicable for other environments. In this paper, the multi-sources information fusion theory has been introduced to predict the transmembrane regions. The proposed method is test on a data set of transmembrane proteins. The results show that the proposed method has the ability of predicting the transmembrane regions as a good performance and powerful tool.展开更多
In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this pap...In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this paper proposes a Dempster-Shafer(DS) theory and intuitionistic fuzzy set(IFS) based temporal evidence combination method(DSIFS-TECM). To realize the method,the relationship between DS theory and IFS is firstly analyzed. And then the intuitionistic fuzzy possibility degree of intuitionistic fuzzy value(IFPD-IFV) is defined, and a novel ranking method with isotonicity for IFV is proposed. Finally, a calculation method for relative reliability factor(RRF) is designed based on the proposed ranking method. As a proof of the method, numerical analysis and experimental simulation are performed. The results indicate DSIFS-TECM is capable of dealing with the conflict temporal evidences and sensitive to the changing of time. Furthermore, compared with the existing methods, DSIFS-TECM has stronger ability of anti-interference.展开更多
弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别。针对红外多传感器的融合识别问题,本文提出了基于...弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别。针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法。首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率生成基本概率赋值(basic probability assignment,BPA);最后,利用D-S证据理论对多个证据的BPA进行融合,输出分类结果。实验结果表明,该方法能有效提高目标识别的准确性。展开更多
针对视频情感识别中存在运算复杂度高的缺点,提出一种基于时空局部二值模式矩(Temporal-Spatial Local Binary Pattern Moment,TSLBPM)的双模态情感识别方法。首先对视频进行预处理获得表情和姿态序列;然后对表情和姿态序列分别提取TSL...针对视频情感识别中存在运算复杂度高的缺点,提出一种基于时空局部二值模式矩(Temporal-Spatial Local Binary Pattern Moment,TSLBPM)的双模态情感识别方法。首先对视频进行预处理获得表情和姿态序列;然后对表情和姿态序列分别提取TSLBPM特征,计算测试序列与已标记的情感训练集特征间的最小欧氏距离,并将其作为独立证据来构造基本概率分配(Basic Probability Assignment,BPA);最后使用Dempster-Shafer证据理论联合规则得到情感识别结果。在双模态表情和姿态情感数据库上的实验结果表明,本文提出的时空局部二值模式矩可以快速提取视频图像的时空特征,能有效识别情感状态。与其他方法的对比实验也验证了本文融合方法的优越性。展开更多
[目的]揭示驱动盘龙江流域不透水表面扩张的影响因子,以及影响因子各属性值对不透水表面扩张的影响程度,并在分析驱动机制的基础上,模拟预测盘龙江流域的扩张趋势,为流域生态建设合理规划提供依据。[方法]采用Dempster—Shafer(D—S)证...[目的]揭示驱动盘龙江流域不透水表面扩张的影响因子,以及影响因子各属性值对不透水表面扩张的影响程度,并在分析驱动机制的基础上,模拟预测盘龙江流域的扩张趋势,为流域生态建设合理规划提供依据。[方法]采用Dempster—Shafer(D—S)证据理论来描述和融合多种空间数据,在已有的不透水表面(impervious surfaces,IS)信息与多种空间数据的量关系的基础上,采用数据驱动方法分配基本概率函数(basic probability assignment,BPA)。经过定义多种空间数据的BPA函数,然后采用D—S证据理论的融合规则融合多个BPA函数以获取研究区域IS的信任函数、不信任函数、不确定函数、似真函数。[结果]距道路距离,距居民点距离,距水系距离,人口密度,GDP,IS邻域单元数,坡度,高程驱动因子对盘龙江流域不透水表面的扩张影响比较大,而坡向对不透水表面扩张的影响程度变化不明显。不透水表面扩张模拟的精度达到78.04%。[结论]采用D—S证据理论方法来描述空间数据和融合多种空间数据具有比传统逻辑回归模型更好的分析和预测功能。展开更多
As an efficient tool in handling uncertain issues, Dempster-Shafer evidence theory has been increasingly used in structural health monitoring and damage detection. In applications, however, Dempster-Shafer evidence th...As an efficient tool in handling uncertain issues, Dempster-Shafer evidence theory has been increasingly used in structural health monitoring and damage detection. In applications, however, Dempster-Shafer evidence theory sometimes leads to counter-intuitive results. In this study, a new fusion algorithm of evidence theory is put forward to address various counter-intuitive problems and manage the reliability difference of the evidence. The proposed algorithm comprises the following aspects:(1) Dempster's combination rule is generalized by introducing the concept of evidence ullage. The new rule allows classical Dempster's rule and can resolve counter-intuitive problems cause by evidence conflict and evidence compatibility;(2) a reliability assessing method based on a priori and posterior knowledge is proposed. Compared with conventional reliability assessment, the proposed method can reflect the actual evidence reliabilities and can efficiently reduce decision risk. Numerical examples confirm the validity and utility of the proposed algorithm. In addition, an experimental investigation on a spatial truss structure is carried out to illustrate the identified ability of the proposed approach. The results indicate that the fusion algorithm has no strict request on the accuracy and consistency of evidence sources and can efficiently enhance diagnostic accuracy.展开更多
文摘An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.
基金Supported by the National Natural Science Foundation of China (No. 60874105, 61174022)the Program for New Century Excellent Talents in University (No. NCET-08-0345)the Chongqing Natural Science Foundation (No. CSCT, 2010BA2003)
文摘Transmembrane proteins are some special and important proteins in cells. Because of their importance and specificity, the prediction of the transmembrane regions has very important theoretical and practical significance. At present, the prediction methods are mainly based on the physicochemical property and statistic analysis of amino acids. However, these methods are suitable for some environments but inapplicable for other environments. In this paper, the multi-sources information fusion theory has been introduced to predict the transmembrane regions. The proposed method is test on a data set of transmembrane proteins. The results show that the proposed method has the ability of predicting the transmembrane regions as a good performance and powerful tool.
基金supported by the National Natural Science Foundation of China(61272011)
文摘In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this paper proposes a Dempster-Shafer(DS) theory and intuitionistic fuzzy set(IFS) based temporal evidence combination method(DSIFS-TECM). To realize the method,the relationship between DS theory and IFS is firstly analyzed. And then the intuitionistic fuzzy possibility degree of intuitionistic fuzzy value(IFPD-IFV) is defined, and a novel ranking method with isotonicity for IFV is proposed. Finally, a calculation method for relative reliability factor(RRF) is designed based on the proposed ranking method. As a proof of the method, numerical analysis and experimental simulation are performed. The results indicate DSIFS-TECM is capable of dealing with the conflict temporal evidences and sensitive to the changing of time. Furthermore, compared with the existing methods, DSIFS-TECM has stronger ability of anti-interference.
文摘弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别。针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法。首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率生成基本概率赋值(basic probability assignment,BPA);最后,利用D-S证据理论对多个证据的BPA进行融合,输出分类结果。实验结果表明,该方法能有效提高目标识别的准确性。
文摘针对视频情感识别中存在运算复杂度高的缺点,提出一种基于时空局部二值模式矩(Temporal-Spatial Local Binary Pattern Moment,TSLBPM)的双模态情感识别方法。首先对视频进行预处理获得表情和姿态序列;然后对表情和姿态序列分别提取TSLBPM特征,计算测试序列与已标记的情感训练集特征间的最小欧氏距离,并将其作为独立证据来构造基本概率分配(Basic Probability Assignment,BPA);最后使用Dempster-Shafer证据理论联合规则得到情感识别结果。在双模态表情和姿态情感数据库上的实验结果表明,本文提出的时空局部二值模式矩可以快速提取视频图像的时空特征,能有效识别情感状态。与其他方法的对比实验也验证了本文融合方法的优越性。
文摘[目的]揭示驱动盘龙江流域不透水表面扩张的影响因子,以及影响因子各属性值对不透水表面扩张的影响程度,并在分析驱动机制的基础上,模拟预测盘龙江流域的扩张趋势,为流域生态建设合理规划提供依据。[方法]采用Dempster—Shafer(D—S)证据理论来描述和融合多种空间数据,在已有的不透水表面(impervious surfaces,IS)信息与多种空间数据的量关系的基础上,采用数据驱动方法分配基本概率函数(basic probability assignment,BPA)。经过定义多种空间数据的BPA函数,然后采用D—S证据理论的融合规则融合多个BPA函数以获取研究区域IS的信任函数、不信任函数、不确定函数、似真函数。[结果]距道路距离,距居民点距离,距水系距离,人口密度,GDP,IS邻域单元数,坡度,高程驱动因子对盘龙江流域不透水表面的扩张影响比较大,而坡向对不透水表面扩张的影响程度变化不明显。不透水表面扩张模拟的精度达到78.04%。[结论]采用D—S证据理论方法来描述空间数据和融合多种空间数据具有比传统逻辑回归模型更好的分析和预测功能。
基金National Natural Science Foundation of China under Grant No.51708446
文摘As an efficient tool in handling uncertain issues, Dempster-Shafer evidence theory has been increasingly used in structural health monitoring and damage detection. In applications, however, Dempster-Shafer evidence theory sometimes leads to counter-intuitive results. In this study, a new fusion algorithm of evidence theory is put forward to address various counter-intuitive problems and manage the reliability difference of the evidence. The proposed algorithm comprises the following aspects:(1) Dempster's combination rule is generalized by introducing the concept of evidence ullage. The new rule allows classical Dempster's rule and can resolve counter-intuitive problems cause by evidence conflict and evidence compatibility;(2) a reliability assessing method based on a priori and posterior knowledge is proposed. Compared with conventional reliability assessment, the proposed method can reflect the actual evidence reliabilities and can efficiently reduce decision risk. Numerical examples confirm the validity and utility of the proposed algorithm. In addition, an experimental investigation on a spatial truss structure is carried out to illustrate the identified ability of the proposed approach. The results indicate that the fusion algorithm has no strict request on the accuracy and consistency of evidence sources and can efficiently enhance diagnostic accuracy.