在传感器网络中,多个传感器对于同一目标的识别结果经常会发生冲突.本文采用基于D em pster-Shafer证据推理理论的数据融合方法来解决这一问题.然而,采用D-S证据组合公式计算融合结果,计算量过于巨大,对处理能力有限的感知结点来说负担...在传感器网络中,多个传感器对于同一目标的识别结果经常会发生冲突.本文采用基于D em pster-Shafer证据推理理论的数据融合方法来解决这一问题.然而,采用D-S证据组合公式计算融合结果,计算量过于巨大,对处理能力有限的感知结点来说负担过重,此外,计算所造成的延时也将严重影响系统的实时性和同步性.本文提出了一个基于矩阵分析的快速融合算法,该算法采用了D-S证据理论的思想,计算得到的融合结果与D-S证据组合公式计算得到的融合结果相同.本文用数学归纳法证明了这一结论.经过模拟实验验证,和直接采用D-S证据组合公式相比,该算法的计算量和所需的计算时间明显减少.展开更多
文摘在传感器网络中,多个传感器对于同一目标的识别结果经常会发生冲突.本文采用基于D em pster-Shafer证据推理理论的数据融合方法来解决这一问题.然而,采用D-S证据组合公式计算融合结果,计算量过于巨大,对处理能力有限的感知结点来说负担过重,此外,计算所造成的延时也将严重影响系统的实时性和同步性.本文提出了一个基于矩阵分析的快速融合算法,该算法采用了D-S证据理论的思想,计算得到的融合结果与D-S证据组合公式计算得到的融合结果相同.本文用数学归纳法证明了这一结论.经过模拟实验验证,和直接采用D-S证据组合公式相比,该算法的计算量和所需的计算时间明显减少.