期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Zeno’s Paradoxes and Lie Tzu’s Dichotomic Wisdom Explained with Alpha Beta (αβ) Asymptotic Nonlinear Math (Including One Example on Second Order Nonlinear Phenomena)
1
作者 Ralph W. Lai Melisa W. Lai-Becker Evgenios Agathokleous 《Journal of Applied Mathematics and Physics》 2023年第5期1209-1249,共41页
Zeno’s paradoxes are a set of philosophical problems that were first introduced by the ancient Greek philosopher Zeno of Elea. Here is the first attempt to use asymptotic approach and nonlinear concepts to address th... Zeno’s paradoxes are a set of philosophical problems that were first introduced by the ancient Greek philosopher Zeno of Elea. Here is the first attempt to use asymptotic approach and nonlinear concepts to address the paradoxes. Among the paradoxes, two of the most famous ones are Zeno’s Room Walk and Zeno’s Achilles. Lie Tsu’s pole halving dichotomy is also discussed in relation to these paradoxes. These paradoxes are first-order nonlinear phenomena, and we expressed them with the concepts of linear and nonlinear variables. In the new nonlinear concepts, variables are classified as either linear or nonlinear. Changes in linear variables are simple changes, while changes in nonlinear variables are nonlinear changes relative to their asymptotes. Continuous asymptotic curves are used to describe and derive the equations for expressing the relationship between two variables. For example, in Zeno’s Room Walk, the equations and curves for a person to walk from the initial wall towards the other wall are different from the equations and curves for a person to walk from the other wall towards the initial wall. One walk has a convex asymptotic curve with a nonlinear equation having two asymptotes, while the other walk has a concave asymptotic curve with a nonlinear equation having a finite starting number and a bottom asymptote. Interestingly, they have the same straight-line expression in a proportionality graph. The Appendix of this discussion includes an example of a second-order nonlinear phenomenon. . 展开更多
关键词 DICHOtoMY Asymptotic Concave and Convex Curve Upper and Bottom As-ymptote cumulative and demulative numbers (opposite to cumulative numbers) Coefficient of Determination Skewed Bell Sigmoid Curve
下载PDF
Utilizing ACP Alpha Beta (αβ) Nonlinear Mathematics for Analyzing Astrophysics and Electrostatic Separation Data (Applications 3 and 4)
2
作者 Ralph W. Lai Melisa W. Lai-Becker +1 位作者 Grace Cheng-Dodge Michael L. Rehmet 《Journal of Applied Mathematics and Physics》 2024年第11期3706-3727,共22页
Analyses of astrophysics and electrostatic separation data were illustrated with the Asymptotic Curve Based and Proportionality Oriented (ACP) nonlinear math for relating two physical variables. The fundamental physic... Analyses of astrophysics and electrostatic separation data were illustrated with the Asymptotic Curve Based and Proportionality Oriented (ACP) nonlinear math for relating two physical variables. The fundamental physical law asserts that the nonlinear change of continuous variable Y is proportional to the nonlinear change in continuous variable X. Mathematically, this is expressed as dα{Y, Yu, Yb} = −Kdβ{X, Xu, Xb}, with Yu, Yb, Xu, and Xb representing the upper and baseline asymptotes of Y and X. Y is the continuous cumulative numbers of the elementary y and X is the continuous cumulative numbers of elementary x. K is the proportionality constant or equally is the rate constant. 展开更多
关键词 Alpha Beta (αβ) Nonlinear Math Asymptotic Concave and Convex Curve Upper and Baseline Asymptote demulative numbers (opposite to cumulative numbers) Coefficient of Determination (COD) Proportionality and Position Constant Skewed Bell and Sigmoid Curve
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部