期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Effect of sample diameter on primary and secondary dendrite arm spacings during directional solidification of Pb-26wt.%Bi hypo-peritectic alloy 被引量:2
1
作者 HU Xiaowu YAN Hong +2 位作者 CHEN Wenjing LI Shuangming FU Hengzhi 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期424-431,共8页
The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the pr... The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the properties of solidified structures. Investigations on primary and secondary dendrite arm spacings of primary a-phase during directionally solidified Pb-26wt%Bi hypo-peritectic alloy were carried out in this research, and systematic studies were conducted using cylindrical samples with different diameters (Ф = 1.8 and 7.0 mm) in order to analyze the effects of sample diameter on the primary and secondary dendrite arm spacings. In this work, the dependence of dendrite arm spacings on growth velocity was established. In addition, the experimental data concerning the primary and secondary dendrite ann spacings were compared with the main predictive dendritic models from the literatures. A comparison between experimental results for dendrite arm spacings of the 1.8-mm-diameter sample and 7.0-ram-diameter sample was also conducted. 展开更多
关键词 lead bismuth alloys dendrite arm spacing directional solidification dendriteS
下载PDF
Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al–Si alloy castings made in sand and Fe–Cr slag molds
2
作者 I.Narasimha Murthy J.Babu Rao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第7期784-793,共10页
The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sa... The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sand and Fe–Cr. A sodium silicate–CO_2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing(SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe–Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe–Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe–Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds. 展开更多
关键词 silica sand ferrochrome slag alloy castings secondary dendrite arm spacing mechanical properties
下载PDF
BP Neural Network of Continuous Casting Technological Parameters and Secondary Dendrite Arm Spacing of Spring Steel 被引量:8
3
作者 HANG Li-hong WANG Ai-guo +2 位作者 TIAN Nai-yuan ZHANG Wei-cun FAN Qiao-li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第8期25-29,共5页
The continuous casting technological parameters have a great influence on the secondary dendrite arm spacing of the slab, which determines the segregation behavior of materials. Therefore, the identification of techno... The continuous casting technological parameters have a great influence on the secondary dendrite arm spacing of the slab, which determines the segregation behavior of materials. Therefore, the identification of technological parameters of continuous casting process directly impacts the property of slab. The relationships between continuous casting technological parameters and cooling rate of slab for spring steel were built using BP neural network model, based on which, the relevant secondary dendrite arm spacing was calculated. The simulation calculation was also carried out using the industrial data. The simulation results show that compared with that of the traditional method, the absolute error of calculation result obtained with BP neural network model reduced from 0. 015 to 0. 0005, and the relative error reduced from 6, 76 % to 0.22 %. BP neural network model had a more precise accuracy in the optimization of continuous casting technological parameters. 展开更多
关键词 continuous casting technological parameter secondary dendrite arm spacing BP neural network
原文传递
Relationship between secondary dendrite arm spacing and local solidification time of 30Cr2Ni4MoV alloy at slow cooling rates 被引量:3
4
作者 Jing Zhao Hong-gang Zhong +3 位作者 Ke Han Ren-xing Li Zhi-shuai Xu Qi-jie Zhai 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第8期821-829,共9页
Solidification process of 231 t 30Cr2Ni4MoV ingot manufactured by slow cooling process was studied using experimental and numerical simulations, which tackled the problems of high cost and long period in large ingot s... Solidification process of 231 t 30Cr2Ni4MoV ingot manufactured by slow cooling process was studied using experimental and numerical simulations, which tackled the problems of high cost and long period in large ingot studying. Based on the numerical results of large ingot, five characteristic locations under different temperature gradients and cooling rates chosen from the large ingot were simulated. The experiments were performed under the same temperature conditions as in numerical simulations with specialized instrument. The influences of temperature gradient in the solid-liquid interface and solidification rate on the size and morphology of solidification structure were analyzed at cooling rate ranging from 10-3 to 10 2℃ s-1. Solidification macrostructure and microstructure showed that no columnar dendrite was found in any specimen. The grain size and secondary dendrite arm spacing decreased at larger cooling rate, and the relationship between secondary dendrite arm spacing and local solidification time or cooling rate was determined. 展开更多
关键词 Slow cooling rate - Simulation Secondary dendrite arm spacing Solidification time Grain size
原文传递
Effect of casting speed on dendrite arm spacing of Mn13 steel continuous casting slab 被引量:1
5
作者 Jian-min Li Mao-fa Jiang +1 位作者 Jun-xiang Ning Jun Zhai 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第6期665-672,共8页
The dendrite arm spacing in the continuous casting slab of Mn13 steel under different casting speeds was measured using the metallographic microscope. Meanwhile, a heat transfer model was established by the Pro-cast s... The dendrite arm spacing in the continuous casting slab of Mn13 steel under different casting speeds was measured using the metallographic microscope. Meanwhile, a heat transfer model was established by the Pro-cast software. The relationship between the dendrite arm spacing and casting speed in continuous casting slab of Mn13 steel was studied and described by a function expression. The results provide an important theoretical basis for the development and optimization of con-tinuous casting production process of high-manganese steel and help to improve the quality of continuous casting slab of high-manganese steel. Under the experimental conditions, the suitable casting speed is about 0.9 m/min. The secondary dendrite spacing maintains a relatively stable low-amplitude increase trend, and it is beneficial to obtain a higher proportion of equiaxed crystals. 展开更多
关键词 High-manganese steel dendrite arm spacing Continuous casting Casting speed
原文传递
Prediction of Primary Dendrite Arm Spacing in Pulsed Laser Surface Melted Single Crystal Superalloy 被引量:1
6
作者 Shiwei Ci Jingjing Liang +6 位作者 Jinguo Li Haiwei Wang Yizhou Zhou Xiaofeng Sun Hongwei Zhang Yutian Ding Xin Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第4期485-494,共10页
Primary dendritic arm spacing(PDAS)is an important microstructure feature of the nickel-base single crystal superalloys.In this paper,a numerical model predicting the PDAS evolution with additive manufacturing paramet... Primary dendritic arm spacing(PDAS)is an important microstructure feature of the nickel-base single crystal superalloys.In this paper,a numerical model predicting the PDAS evolution with additive manufacturing parameters using pulsed laser is established,which combines the theoretical PDAS models with the temperature field calculation model during pulsed laser process.Based on this model,processing maps that related process parameters to the evolution of PDAS are generated.To obtain more accurate prediction model,the parameters of different solidification conditions,G^(-0.5)V^(-0.25) and G^(-0.5)V^(-0.25),are selected to calculate PDAS.The simulation results show that the PDAS increases as the arise of P and t.The processmgPDAS map can accurately predict the evolution of PDAS with pulsed laser process parameters,which is well in accordance with the experimental results.Additionally,the PDAS values calculated by the G^(-0.5)V^(-0.25) are more in line with the experimental results than those calculated by the G^(-0.5)V^(-0.25). 展开更多
关键词 Additive manufacturing Nickel-base superalloy Single crystal Pulsed laser Primary dendritic arm spacing
原文传递
Effect of cooling rates on dendrite spacings of directionally solidified DZ125 alloy under high thermal gradient 被引量:11
7
作者 ZHANG Weiguo LIU Lin ZHAO Xinbao HUANG Taiwen YU Zhuhuan QU Min FU Hengzhi 《Rare Metals》 SCIE EI CAS CSCD 2009年第6期633-638,共6页
The dendrite morphologies and spacings of directionally solidified DZ125 superalloy were investigated under high thermal gradient about 500 K/cm. The results reveal that, with increasing cooling rate, both the spacing... The dendrite morphologies and spacings of directionally solidified DZ125 superalloy were investigated under high thermal gradient about 500 K/cm. The results reveal that, with increasing cooling rate, both the spacings of primary and secondary dendrite arms decrease, and the dendrite morphologies transit from coarse to superfme dendrite. The secondary dendrite arms trend to be refined and be well developed, and the tertiary dendrite will occur. The predictions of the Kurz/Fisher model and the Hunt/Lu model accord basically with the experimental data for primary dendrite arm spacing. The regression equation of the primary dendrite arm spacings 21 and the cooling rate Vc is λ1 = 0.013 Vc^-0.32. The regression equation of the secondary dendrite arm spacing λ2 and the cooling rate Vc is λ2 = 0.00258 Vc^-0.31, which gives good agreement with the Feurer/Wunderlin model. 展开更多
关键词 directional solidification superalloy thermal gradient cooling rate dendrite arm spacing
下载PDF
Grain and dendrite refinement of A356 alloy with Al-Ti-C-RE master alloy 被引量:9
8
作者 Hong-Liang Zhao Jin-Sheng Yue +1 位作者 Ya Gao Kang-Rong Weng 《Rare Metals》 SCIE EI CAS CSCD 2013年第1期12-17,共6页
Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A35... Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A356 is poor by the addition level of 0.5 wt% master alloy, but when the level reaches 3.0 wt% the grain can get a satisfactory refining effect. Dendrite of A356 can be effectively refined by addition of 0.5 wt% master alloy; however, the refining effect is not significantly improved by further increasing the addition of master alloy. Grain and dendrite refining effects are compared in this article, and the results show that the grain and dendrite exhibit different refining effects with the same addition level of master alloy. Dendrite is easier to reach the optimal refining effect than grain. 展开更多
关键词 A1-Ti-C-RE A356 Grain refiner Secondary dendrite arm spacing (SDAS)
下载PDF
DENDRITE REFINING AND EUTECTIC TRANSFORMATION BEHAVIOR OF NICKEL-BASE SINGLE CRYSTAL (NBSC) SUPERALLOY 被引量:2
9
作者 杜炜 李金山 +2 位作者 李建国 傅恒志 魏朋义 《Chinese Journal of Aeronautics》 SCIE EI CSCD 1998年第1期62-66,共5页
DENDRITEREFININGANDEUTECTICTRANSFORMATIONBEHAVIOROFNICKEL┐BASESINGLECRYSTAL(NBSC)SUPERALLOYDuWei(杜炜),LiJinsh... DENDRITEREFININGANDEUTECTICTRANSFORMATIONBEHAVIOROFNICKEL┐BASESINGLECRYSTAL(NBSC)SUPERALLOYDuWei(杜炜),LiJinshan(李金山),LiJianguo... 展开更多
关键词 nickel alloys single crystals heat resistant alloys dendrite arm spacing EUTECTICS
下载PDF
Influence of La-Ce Mischmetal on Dendritical Arm Space and Ultimate Tensile Strength in ZL105 Alloys 被引量:1
10
作者 李华基 李革胜 刘昌明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第1期43-45,共3页
The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate te... The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate tensile strength(b) were investigated, and the relationship between b and LDAS was founded. (La+Ce) mischmetal has stronger ability to refine LDAs than pure La or pure Ce. The proper adding amounts of it is 0.15% (mass fraction). LDAs has a remarkable effect on ah of casting, which can be predicted by the regression equation obtained in this work. 展开更多
关键词 rare earths Al-Si alloy dendritical arm space ultimate tensile strength
下载PDF
Effect of Ta on solidification characteristics and mechanical properties of DZ411 Ni-based superalloy
11
作者 Peng Peng Zi-jie Liu +3 位作者 Yuan-li Xu Xu-dong Zhang Zhi-kun Ma Jia-tai Wang 《China Foundry》 SCIE CAS CSCD 2023年第5期376-386,共11页
The effects of Ta content(2.72wt.%,3.10wt.%and 4.00wt.%)on the solidification characteristics and mechanical properties of directionally solidified DZ411 Ni-based superalloys were investigated.It is found that the con... The effects of Ta content(2.72wt.%,3.10wt.%and 4.00wt.%)on the solidification characteristics and mechanical properties of directionally solidified DZ411 Ni-based superalloys were investigated.It is found that the content of Mo decreases with the increase of Ta in liquid phase after directional solidification,indicating the addition of Ta can reduce the element segregation in alloys.The primary and secondary dendrite arm spacings(PDAS and SDAS)of the DZ411 alloy increase with the addition of Ta,which are consistent with the models by Hunt and Wagner.The increase of PDAS and SDAS can provide enough space for the growth of tertiary dendrite arms,which hinders the growth of unfavorably oriented primary dendrites.As a result,the addition of Ta facilitates the growth of favorably oriented dendrites.More MC carbides andγ-γ'eutectics are formed in the interdendritic regions,which is attributed to the segregation of Ta in the liquid phase.Furthermore,the degree of supersaturation of W,Mo inγmatrix increases with the increase of Ta,thus,the addition of Ta promotes the formation of TCP phase.The addition of Ta also increases the microhardness in both the primary dendrite and interdendritic regions of the alloy,and the microhardness of the primary dendrite is closer to that in interdendritic regions with the increase of Ta. 展开更多
关键词 DZ411 superalloy directional solidification TA dendrite arm spacing MICROHARDNESS
下载PDF
Effect of M-EMS on the solidification structure of a steel billet 被引量:12
12
作者 Hua-jie Wu Ning Wei +3 位作者 Yan-ping Bao Guo-xin Wang Chao-ping Xiao Jin-jin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第2期159-164,共6页
Effects of mold electromagnetic stirring (M-EMS) on the solidification structure of 45# steel billet were investigated by examination of interdendritic corrosion. The results show that the primary and secondary dend... Effects of mold electromagnetic stirring (M-EMS) on the solidification structure of 45# steel billet were investigated by examination of interdendritic corrosion. The results show that the primary and secondary dendrite arm spacings increase from the edge of the billet to the center and decrease obviously with increasing electromagnetic torque, which will be beneficial to refine the solidification structure and enlarge the equiaxed crystal zone. The ratio of equiaxed crystal increases by 15.9% with the electromagnetic torque increasing from 230 to 400 cN·cm. The increase of stirring intensity can improve the cooling rate and the impact of M-EMS on it reduces from the edge of the billet to the central area, where the cooling rates are similar at different torques. The closer to the central area, the less the influence of M-EMS on the cooling rate is. The ratio of the primary to secondary dendrite arm spacing is approximately 2.0, namely, λ1≈2λ2, and is constant irrespective of the stirring intensity and position of the billet. Original position analysis (OPA) results indicate that the center segregation of the billet is greatly improved, and the more uniform and compact solidification structure will be obtained with the increase of stirring intensity. 展开更多
关键词 continuous casting electromagnetic stirring dendrite arm spacing cooling rate SOLIDIFICATION
下载PDF
Solidification structure simulation and casting process optimization of GCr15 bloom alloy 被引量:2
13
作者 Jie Li Hao-tian Wu +1 位作者 Yang Liu Yan-hui Sun 《China Foundry》 SCIE CAS 2022年第1期63-74,共12页
Based on the solidification heat transfer model and CAFÉmodel,the solidification structure of GCr15 bloom alloy was studied.Using nail shooting and acid etching experiments,the solidification models were verified... Based on the solidification heat transfer model and CAFÉmodel,the solidification structure of GCr15 bloom alloy was studied.Using nail shooting and acid etching experiments,the solidification models were verified.The secondary dendrite arm spacing(SDAS)model of GCr15 was obtained by simulation calculation and metallographic observation.With the increase of casting speed,the SDAS,equiaxed crystal ratio(ECR)and average grain size increase.With the rise of superheat,the SDAS increases in the 20-70 mm of thickness and decreases in the 80-160 mm of thickness.The ECR decreases and the average grain size increases with the increase of superheat.With the increase of specific water flow,both the SDAS and ECR decrease.The minimum average grain size is obtained when the specific water flow is 0.20 L·kg^(-1).The central carbon segregation index is reduced from 1.11 to 1.075. 展开更多
关键词 numerical simulation continuous casting equiaxed crystal ratio secondary dendrite arm spacing carbon segregation
下载PDF
Effects of solidification parameters on microstructure and mechanical property of a Ni-based superalloy K35 blade
14
作者 XUE Xiang,and XU Lin National Key Laboratory for Precision Hot Processing of Metals,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期274-279,共6页
A gas turbine blade of Ni-based superalloy K35 was chosen as the test casting and the effects of solidification parameters on microstructure and mechanical property of the blade were investigated.A software package wa... A gas turbine blade of Ni-based superalloy K35 was chosen as the test casting and the effects of solidification parameters on microstructure and mechanical property of the blade were investigated.A software package was used to numerically simulate the mold filling and solidification process of the blade casting in order to obtain the solidification parameters in the casting.The secondary dendrite arm spacing and grain size at different positions of the blade casting were measured.The relationships of secondary dendrite arm spacing and grain size versus cooling rate and solidification time were quantitatively studied.The relationships of Vickers-hardness versus solidification structures are also studied.The results show that Vickers-hardness decreases with the increase of both grain size and secondary dendrite arm spacing.This offers a good basis to predict the microstructure and mechanical property of a gas turbine blade casting through numerical simulation in order to obtain a high-quality gas turbine blade casting. 展开更多
关键词 SUPERALLOY MICROSTRUCTURE dendrite arm spacing grain size HARDNESS
下载PDF
Effect of abruptly changing withdrawal rate on solidification microstructure in directionally solidified Al-4.5wt%Cu alloy
15
作者 Yang Luyan Li Shuangming +2 位作者 Zhong Hong Ren Ruohua Fu Hengzhi 《China Foundry》 SCIE CAS 2014年第1期8-13,共6页
Al-4.5wt.%Cu alloy has been directionally solidified at constant and abruptly changing withdrawal rates, respectively. The effects of the withdrawal rate on solidification microstructure, primary dendrite arm spacing(... Al-4.5wt.%Cu alloy has been directionally solidified at constant and abruptly changing withdrawal rates, respectively. The effects of the withdrawal rate on solidification microstructure, primary dendrite arm spacing(PDAS) and liquid solute distribution in front of the solid-liquid interface were investigated. The experimental results for the PDAS at a constant withdrawal rate agree well with the values calculated by the Hunt, Trivedi and Hunt-Lu models. At an abrupt change in the withdrawal rate, the maximum to minimum ratio of the PDAS at a given solidification parameter, i.e. λ1max/λ1min, is more than 2, and the PDAS values are remarkably history-dependent. Further, the liquid-solute distribution curve based on theoretical calculation shows that the larger the initial withdrawal rate is, the smaller the minimum of liquid solute concentration in front of the solid-liquid interface is after the abrupt change in withdrawal rate. 展开更多
关键词 directional solidifi cation abrupt change of withdrawal rate primary dendrite arm spacing liquid-solute distribution Al-4.5wt.%Cu alloy
下载PDF
ALLOY MORPHOLOGY UNDER SUPERHIGH SPEED DIRECTIONAL SOLIDIFICATION
16
作者 Chu Shuangjie Li Jianguo +2 位作者 Liu Zhongyuan Shi Zhengxing Fu Hengzhi 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1992年第4期66-69,共4页
This paper explains the principle of a newly developed ZMLMC directional solidification apparatus with a superhigh temperature gradient.With the help of the apparatus,research was done on the change of directional sol... This paper explains the principle of a newly developed ZMLMC directional solidification apparatus with a superhigh temperature gradient.With the help of the apparatus,research was done on the change of directional solidification structures of the cobalt based superalloy K10 at superhigh velocities.Relations between the primary and secondary dendrite arm spacings and the cooling rates Were investigated.Experimental results show that the primary and secondary dendrite arm spacings of directionally solidified cobalt based superalloys are respectively finer than one fifth and one eighth of those produced by conventional directional soli-dification processes.The primary and secondary dendrite arm spacing which can be decreased by increasing the cooling rate,and the relations between these spacings(λ1,λ2)and the temperature gradient(G)and solidfication rate(v)were as follows:λ1=1.428×10^(3)(G·v)^-1_(1)λ_(2)=0.132×10^(3)(G·v)^-1. 展开更多
关键词 superhigh speed directional solidification SUPERALLOY dendrite arm spacing
下载PDF
Simulation of Secondary Dendritic Arm Spacing of Free Cutting Steel 38MnVS 被引量:1
17
作者 XIA Yun-jin WANG Fu-ming WANG Jin-long 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第6期54-60,73,共8页
The secondary dendritic arm spacing (SDAS) of free cutting steel 38MnVS during continuous casting process was simulated based on a Mixed Lagrangian and Eulerian Method (MILE Method) and SDAS model. The simulation ... The secondary dendritic arm spacing (SDAS) of free cutting steel 38MnVS during continuous casting process was simulated based on a Mixed Lagrangian and Eulerian Method (MILE Method) and SDAS model. The simulation results are basically in agreement with measured ones. The effect of composition, superheat and casting speed on SDAS are studied, and the relationship between SDAS and interdendritic segregation is discussed. The results show that SDAS increases with increasing carbon and silicon content, and decreases with increasing manganese and sulfur content. The increase of superheat and casting speed also makes SDAS increase. The permeability of co lumnar mushy zone which is parallel to the primary dendritic arms is calculated based on Carman-Kozeny relationship, and the increase of SDAS makes the permeability increase, which exacerbates interdendritic segregation of columnar crystal zone. 展开更多
关键词 MiLE method secondary dendritic arm spacing PERMEABILITY interdendritic segregation
原文传递
Effect of Cooling Rate on the Microstructure of ZA48 Alloy
18
作者 王杰芳 谢敬佩 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第5期811-813,共3页
The effect of cooling rate on the microstructure of ZA48 alloy was investigated. The alloy was prepared using a relatively simple technique, i e, rapid cooling of the melt in a steel wedge mould. The dependence of mic... The effect of cooling rate on the microstructure of ZA48 alloy was investigated. The alloy was prepared using a relatively simple technique, i e, rapid cooling of the melt in a steel wedge mould. The dependence of microstructure on the cooling rate (about 40 to 10^3 K/s) was determined by the secondary dendrite arm space size measurement, optical microscopy(OM), and transmission electron microscopy (TEM). It is found that the matrix structure over a large cooling rate is composed of α-Al dendrite and eutectoid (α+η), the size of α-Al dendrite decreases with increasing cooling rate. The relationship between the cooling rate and the secondary dendrite arm space size has been established. TEM shows that a large number of small and dispersed precipitations can be seen in the primary α phase of tip region. Electron diffraction pattern shows that the precipitate phase is Zn3Mg2 phase. 展开更多
关键词 cooling rate MICROSTRUCTURE secondary dendrite arm space size PRECIPITATION
下载PDF
Metallurgical quality of CSP thin slabs
19
作者 DeguangZhou JieFu +3 位作者 YonglinKang ZhongbingWang: JingLi ZhongboXu 《Journal of University of Science and Technology Beijing》 CSCD 2004年第2期106-109,共4页
The casting structure, chemical composition segregation, dendrite arm space,inclusiona and during the CSP (compact strip production) rolling process were investigated. Theresults show that the CSP thin slab has a feat... The casting structure, chemical composition segregation, dendrite arm space,inclusiona and during the CSP (compact strip production) rolling process were investigated. Theresults show that the CSP thin slab has a feature of uniform fine grains, more columnar crystals,less central porosity and segregation etc. There is no great difference in macrostructure betweenthe CSP thin slab and conventional slab; however, the fine dendrite structure of the CSP slab ismore uniform. Moreover, the central porosity and segregation are obviously improved after the firstpass; and the dendrite is bent along the rolling direction rather than broken into pieces. Smallinclusions with the diameter less than 10 mum in the CSP slab are dominantly consisted of aluminatesformed by Al deoxidation and Ca treatment and not floating out of the melt. The large sizeinclusions found in the continuous casting slab are very few. 展开更多
关键词 CSP casting structure SEGREGATION dendrite arm space INCLUSION
下载PDF
Macro-and Microstructure Evolution of 5CrNiMo Steel Ingots during Electroslag Remelting Process 被引量:10
20
作者 Lei RAO Jian-hua ZHAO +2 位作者 Zhan-xi ZHAO Gang DING Mao-peng GENG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第7期644-652,共9页
A comprehensive mathematical model was established and used to simulate the macro and microstructure evolution during the production process of 5CrNiMo steel ingot by electroslag remelting (ESR) method. Along the in... A comprehensive mathematical model was established and used to simulate the macro and microstructure evolution during the production process of 5CrNiMo steel ingot by electroslag remelting (ESR) method. Along the ingot height, the macrostructure distribution characteristics changed from vertical, fine columnar grains to tilted, coarse columnar grains, and this transformation process occurred at the very beginning of ESR. In the cross section of the ingot, there were three grain morphology regions and two grain type transition regions from the outside to the center of the ingot. These regions were the fine columnar grain region, columnar competitive growth transition re gion, coarse columnar grain region, columnar to equiaxed grain transition (CET) region, and coarse equiaxed grain region. The influence of the remelting rate on the macrostructure and mlcrostructure was investigated using a series of experiments and simulations. The results showed that a low remelting rate could produce a small grain growth angle (GGA) ; the average secondary dendrite arm spacing (SDAS) firstly decreased and then increased as the remelting rate increased. An excessively high or low remelting rate can increase the GGA and average SDAS in ingots. Thus, the remelting rate should be controlled within a suitable range to reduce composition microsegregation and microshrinkage in the ingot to produce an ESR ingot with satisfactory hot forging performance. 展开更多
关键词 electroslag remelting MACROSTRUCTURE MICROSTRUCTURE remelting rate secondary dendrite arm spacing
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部