期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Image denoising algorithm of refuge chamber by combining wavelet transform and bilateral filtering 被引量:9
1
作者 Zhang Weipeng 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期228-232,共5页
In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and ... In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and bilateral denoising. First, the wavelet transform is adopted to decompose the image of refuge chamber, of which low frequency component remains unchanged. Then, three high-frequency components are treated by bilateral filtering, and the image is reconstructed. The result shows that the combination of bilateral filtering and wavelet transform for image denoising can better retain the details which are included in the image, while providing better visual effect. This is superior to using either bilateral filtering or wavelet transform alone. It is useful for perfecting emergency refuge system of coal mines. 展开更多
关键词 Refuge chamber Image denoising Bilateral filtering Wavelet transform
下载PDF
Multi-level denoising and enhancement method based on wavelet transform for mine monitoring 被引量:9
2
作者 Yanqin Zhao 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期163-166,共4页
Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation ... Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment. 展开更多
关键词 Median filter Wiener filter Wavelet transform Image denoising Image enhancement
下载PDF
A deep learning method for traffic light status recognition
3
作者 Lan Yang Zeyu He +5 位作者 Xiangmo Zhao Shan Fang Jiaqi Yuan Yixu He Shijie Li Songyan Liu 《Journal of Intelligent and Connected Vehicles》 EI 2023年第3期173-182,共10页
Real-time and accurate traffic light status recognition can provide reliable data support for autonomous vehicle decision-making and control systems.To address potential problems such as the minor component of traffic... Real-time and accurate traffic light status recognition can provide reliable data support for autonomous vehicle decision-making and control systems.To address potential problems such as the minor component of traffic lights in the perceptual domain of visual sensors and the complexity of recognition scenarios,we propose an end-to-end traffic light status recognition method,ResNeSt50-CBAM-DINO(RC-DINO).First,we performed data cleaning on the Tsinghua-Tencent traffic lights(TTTL)and fused it with the Shanghai Jiao Tong University’s traffic light dataset(S2TLD)to form a Chinese urban traffic light dataset(CUTLD).Second,we combined residual network with split-attention module-50(ResNeSt50)and the convolutional block attention module(CBAM)to extract more significant traffic light features.Finally,the proposed RC-DINO and mainstream recognition algorithms were trained and analyzed using CUTLD.The experimental results show that,compared to the original DINO,RC-DINO improved the average precision(AP),AP at intersection over union(IOU)=0.5(AP50),AP for small objects(APs),average recall(AR),and balanced F score(F1-Score)by 3.1%,1.6%,3.4%,0.9%,and 0.9%,respectively,and had a certain capability to recognize the partially covered traffic light status.The above results indicate that the proposed RC-DINO improved recognition performance and robustness,making it more suitable for traffic light status recognition tasks. 展开更多
关键词 traffic light status recognition autonomous vehicle detection transformer with improved denoising anchor boxes(DINO) Chinese urban traffic light dataset(CUTLD)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部