On the basis of other researchers' achievements and the authors' understanding of flow units, a proposal on classification and denomination of flow units for clastic reservoirs of continental deposit is put fo...On the basis of other researchers' achievements and the authors' understanding of flow units, a proposal on classification and denomination of flow units for clastic reservoirs of continental deposit is put forward according to the practical need of oilfield development and relevant theories. The specific implications of development and geology are given to each type of flow units, which has provided a scientific basis for oil development.展开更多
The so-called“small denominator problem”was a fundamental problem of dynamics,as pointed out by Poincar´e.Small denominators appear most commonly in perturbative theory.The Duffing equation is the simplest exam...The so-called“small denominator problem”was a fundamental problem of dynamics,as pointed out by Poincar´e.Small denominators appear most commonly in perturbative theory.The Duffing equation is the simplest example of a non-integrable system exhibiting all problems due to small denominators.In this paper,using the forced Duffing equation as an example,we illustrate that the famous“small denominator problems”never appear if a non-perturbative approach based on the homotopy analysis method(HAM),namely“the method of directly defining inverse mapping”(MDDiM),is used.The HAM-based MDDiM provides us great freedom to directly define the inverse operator of an undetermined linear operator so that all small denominators can be completely avoided and besides the convergent series of multiple limit-cycles of the forced Duffing equation with high nonlinearity are successfully obtained.So,from the viewpoint of the HAM,the famous“small denominator problems”are only artifacts of perturbation methods.Therefore,completely abandoning perturbation methods but using the HAM-based MDDiM,one would be never troubled by“small denominators”.The HAM-based MDDiM has general meanings in mathematics and thus can be used to attack many open problems related to the so-called“small denominators”.展开更多
文摘On the basis of other researchers' achievements and the authors' understanding of flow units, a proposal on classification and denomination of flow units for clastic reservoirs of continental deposit is put forward according to the practical need of oilfield development and relevant theories. The specific implications of development and geology are given to each type of flow units, which has provided a scientific basis for oil development.
基金This work is partly supported by National Natural Science Foundation of China(Approval No.12272230)Shanghai Pilot Program for Basic Research–Shanghai Jiao Tong University(No.21TQ1400202).
文摘The so-called“small denominator problem”was a fundamental problem of dynamics,as pointed out by Poincar´e.Small denominators appear most commonly in perturbative theory.The Duffing equation is the simplest example of a non-integrable system exhibiting all problems due to small denominators.In this paper,using the forced Duffing equation as an example,we illustrate that the famous“small denominator problems”never appear if a non-perturbative approach based on the homotopy analysis method(HAM),namely“the method of directly defining inverse mapping”(MDDiM),is used.The HAM-based MDDiM provides us great freedom to directly define the inverse operator of an undetermined linear operator so that all small denominators can be completely avoided and besides the convergent series of multiple limit-cycles of the forced Duffing equation with high nonlinearity are successfully obtained.So,from the viewpoint of the HAM,the famous“small denominator problems”are only artifacts of perturbation methods.Therefore,completely abandoning perturbation methods but using the HAM-based MDDiM,one would be never troubled by“small denominators”.The HAM-based MDDiM has general meanings in mathematics and thus can be used to attack many open problems related to the so-called“small denominators”.