期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Faster RCNN的节肢动物目标检测方法
被引量:
7
1
作者
郭子豪
董乐乐
曲志坚
《计算机应用》
CSCD
北大核心
2023年第1期88-97,共10页
自然生态环境下的节肢动物目标检测存在目标背景复杂、尺度差异大以及目标密集等特点,导致目标检测精度和准确率不高。为此,提出一种基于改进Faster RCNN模型的节肢动物目标检测方法 AROD RCNN。首先,设计一种有监督的并行空间与通道注...
自然生态环境下的节肢动物目标检测存在目标背景复杂、尺度差异大以及目标密集等特点,导致目标检测精度和准确率不高。为此,提出一种基于改进Faster RCNN模型的节肢动物目标检测方法 AROD RCNN。首先,设计一种有监督的并行空间与通道注意力(SPSCAT)机制,以提高复杂背景环境下节肢动物目标检测的准确率;然后,引入第二代可变形卷积重塑ResNet50中C1~C5块卷积层,并使用特征金字塔网络(FPN)对ResNet50中C2~C6块进行特征融合以解决目标尺度差异较大影响检测精度的问题;最后,通过密集局部回归(DLR)方法对回归阶段进行改进,从而提高模型回归的准确性。实验结果表明,该方法在ArTaxOr数据集上的各类别平均精度(mAP)达到了0.717,较原始Faster RCNN模型提高了0.453,而召回率达到了0.787。可见该方法能够有效解决目标遮挡和复杂背景等问题,在节肢动物密集目标与小目标检测中表现良好。
展开更多
关键词
目标检测
注意力机制
可变形卷积
特征金字塔网络
密集局部回归
节肢动物
下载PDF
职称材料
题名
基于改进Faster RCNN的节肢动物目标检测方法
被引量:
7
1
作者
郭子豪
董乐乐
曲志坚
机构
山东理工大学计算机科学与技术学院
出处
《计算机应用》
CSCD
北大核心
2023年第1期88-97,共10页
基金
山东省高等学校青年创新团队发展计划项目(2019KJN048)。
文摘
自然生态环境下的节肢动物目标检测存在目标背景复杂、尺度差异大以及目标密集等特点,导致目标检测精度和准确率不高。为此,提出一种基于改进Faster RCNN模型的节肢动物目标检测方法 AROD RCNN。首先,设计一种有监督的并行空间与通道注意力(SPSCAT)机制,以提高复杂背景环境下节肢动物目标检测的准确率;然后,引入第二代可变形卷积重塑ResNet50中C1~C5块卷积层,并使用特征金字塔网络(FPN)对ResNet50中C2~C6块进行特征融合以解决目标尺度差异较大影响检测精度的问题;最后,通过密集局部回归(DLR)方法对回归阶段进行改进,从而提高模型回归的准确性。实验结果表明,该方法在ArTaxOr数据集上的各类别平均精度(mAP)达到了0.717,较原始Faster RCNN模型提高了0.453,而召回率达到了0.787。可见该方法能够有效解决目标遮挡和复杂背景等问题,在节肢动物密集目标与小目标检测中表现良好。
关键词
目标检测
注意力机制
可变形卷积
特征金字塔网络
密集局部回归
节肢动物
Keywords
object detection
attention mechanism
deformable convolution
Feature Pyramid Network(FPN)
dense
local
regression
(
dlr
)
arthropod
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Faster RCNN的节肢动物目标检测方法
郭子豪
董乐乐
曲志坚
《计算机应用》
CSCD
北大核心
2023
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部