The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectiv...The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.展开更多
The classification of hyperspectral remote sensing data is an important problem theoretically and practically. With the increase of spectral bands, the separability of objects on remote sensing image should be improve...The classification of hyperspectral remote sensing data is an important problem theoretically and practically. With the increase of spectral bands, the separability of objects on remote sensing image should be improved. But the effects of traditional algorithm on feature extraction such as principal component analysis(PCA) is not so good for hyperspectral image. The key problem is that PCA can only represent the linear structure of data set; while the data clouds of different objects on hyperspectral image usually distribute on a nonlinear manifold. This paper established an algorithm of nonlinear feature extraction named as nonlinear principal poly lines, based on the algorithm, a classifier is constructed and the classification accuracy of hyperspectral image can be improved.展开更多
While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are n...While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are not satisfactory to extract coastline in high-resolution panchromatic remote sensing image.Active contour model,also called snakes,have proven useful for interactive specification of image contours,so it is used as an effective coastlines extraction technique.Firstly,coastlines are detected by water segmentation and boundary tracking,which are considered initial contours to be optimized through active contour model.As better energy functions are developed,the power assist of snakes becomes effective.New internal energy has been done to reduce problems caused by convergence to local minima,and new external energy can greatly enlarge the capture region around features of interest.After normalization processing,energies are iterated using greedy algorithm to accelerate convergence rate.The experimental results encompassed examples in images and demonstrated the capabilities and efficiencies of the improvement.展开更多
Automatic extraction of road and linear structure from remote sensing images is a very important problem. This paper analyses several existing methods of the automatic road and linear structure extraction by using som...Automatic extraction of road and linear structure from remote sensing images is a very important problem. This paper analyses several existing methods of the automatic road and linear structure extraction by using some multi-spectral remote sensing images acquired from different spatial resolutions, districts and road characteristics. Their advantages and disadvantages have been generalized.展开更多
Due to the large quantities of data and high relativity of the spectra of remote sensing images, K-L transformation is used to eliminate the relativity. An improved ISODATA(Interative Self-Organizing Data Analysis Tec...Due to the large quantities of data and high relativity of the spectra of remote sensing images, K-L transformation is used to eliminate the relativity. An improved ISODATA(Interative Self-Organizing Data Analysis Technique A) algorithm is used to extract the spectrum features of the images. The computation is greatly reduced and the dynamic arguments are realized. The comparison of features between two images is carried out, and good results are achieved in simulation.展开更多
Road traffic is the important driving factor for economic and social development. With the rapid increase of vehicle population, road traffic problems such as traffic jam and traffic accident have become the bottlenec...Road traffic is the important driving factor for economic and social development. With the rapid increase of vehicle population, road traffic problems such as traffic jam and traffic accident have become the bottleneck which restricts economic development. In recent years, natural disasters frequently occur in China. Therefore, it is essential to extract road information to compute the degree of road damage for traffic emergency management. A road extraction method based on region growing and mathematical morphology from remote sensing images is proposed in this paper. According to the road features, the remote sensing image is preprocessed to separate road regions from non-road regions preliminarily. After image thresholding, region growing algorithm is used to extract connected regions. Then we sort connected regions by area to exclude the small regions which are probably non-road objects. Finally, the mathematical morphology algorithm is used to fill the holes inside the road regions. The experimental results show that the method proposed can effectively extract roads from remote sensing images. This research also has broad prospects in dealing with traffic emergency management by the government.展开更多
Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation e...Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation elements of river basins.The main research of this paper were as follows:(1)a typical vegetation extraction sample set based on low-altitude remote sensing images was established.(2)A low-altitude remote sensing image vegetation extraction model based on the focus perception module was designed to realize the end-to-end automatic extraction of different types of vegetation areas of low-altitude remote sensing images to fully learn the spectral spatial texture information and deep semantic information of the images.(3)By comparison with the baseline method,baseline method with embedded focus perception module showed an improvement in the precision by 7.37%and mIoU by 49.49%.Through visual interpretation and quantitative calculation analysis,the typical river vegetation adaptive extraction network has effectiveness and generalization ability,consistent with the needs of practical applications of vegetation extraction.展开更多
In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in thi...In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.展开更多
With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and compute...With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and computer vision has hit the industrial world and makes it possible to apply Artificial intelligence to solve problems such as automatic extraction of information and image interpretation.However,due to the complex architecture of IoT and the lack of a unified security protection mechanism,devices in remote sensing are vulnerable to privacy leaks when sharing data.It is necessary to design a security scheme suitable for computation‐limited devices in IoT,since traditional encryption methods are based on computational complexity.Visual Cryptography(VC)is a threshold scheme for images that can be decoded directly by the human visual system when superimposing encrypted images.The stacking‐to‐see feature and simple Boolean decryption operation make VC an ideal solution for privacy‐preserving recognition for large‐scale remote sensing images in IoT.In this study,the secure and efficient transmission of high‐resolution remote sensing images by meaningful VC is achieved.By diffusing the error between the encryption block and the original block to adjacent blocks,the degradation of quality in recovery images is mitigated.By fine‐tuning the pre‐trained model from large‐scale datasets,we improve the recognition performance of small encryption datasets for remote sensing images.The experimental results show that the proposed lightweight privacy‐preserving recognition framework maintains high recognition performance while enhancing security.展开更多
Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis ...Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.展开更多
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi...This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.展开更多
Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods fo...Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.展开更多
A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perfo...A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process.展开更多
With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain s...With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.展开更多
IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A stud...IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.展开更多
Remote sensing image classification is the basis of remote sensing image analysis and understanding.It aims to assign each pixel an object class label.To achieve satisfactory classification accuracy,single feature is ...Remote sensing image classification is the basis of remote sensing image analysis and understanding.It aims to assign each pixel an object class label.To achieve satisfactory classification accuracy,single feature is not enough.Multiple features are usually integrated in remote sensing image classification.In this paper,a method based on neural network to combine multiple features was proposed.A single network was used to perform the task instead of ensemble of neural networks.A special architecture of network was designed to fit the task.The method effectively avoids the problems in direct conjunction of multiple features.Experiments on Indian93 data set show that the method has obvious advantages over conjunction of features on both recognition rate and training time.展开更多
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
基金Young Innovative Talents Project of Guangdong Ordinary Universities(No.2022KQNCX225)School-level Teaching and Research Project of Guangzhou City Polytechnic(No.2022xky046)。
文摘The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.
基金Project(40174003) supported by the National Natural Science Foundation of China
文摘The classification of hyperspectral remote sensing data is an important problem theoretically and practically. With the increase of spectral bands, the separability of objects on remote sensing image should be improved. But the effects of traditional algorithm on feature extraction such as principal component analysis(PCA) is not so good for hyperspectral image. The key problem is that PCA can only represent the linear structure of data set; while the data clouds of different objects on hyperspectral image usually distribute on a nonlinear manifold. This paper established an algorithm of nonlinear feature extraction named as nonlinear principal poly lines, based on the algorithm, a classifier is constructed and the classification accuracy of hyperspectral image can be improved.
基金Sponsoreds by the National Natural Science Foundation of China (Grant No. 60575016)
文摘While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are not satisfactory to extract coastline in high-resolution panchromatic remote sensing image.Active contour model,also called snakes,have proven useful for interactive specification of image contours,so it is used as an effective coastlines extraction technique.Firstly,coastlines are detected by water segmentation and boundary tracking,which are considered initial contours to be optimized through active contour model.As better energy functions are developed,the power assist of snakes becomes effective.New internal energy has been done to reduce problems caused by convergence to local minima,and new external energy can greatly enlarge the capture region around features of interest.After normalization processing,energies are iterated using greedy algorithm to accelerate convergence rate.The experimental results encompassed examples in images and demonstrated the capabilities and efficiencies of the improvement.
文摘Automatic extraction of road and linear structure from remote sensing images is a very important problem. This paper analyses several existing methods of the automatic road and linear structure extraction by using some multi-spectral remote sensing images acquired from different spatial resolutions, districts and road characteristics. Their advantages and disadvantages have been generalized.
文摘Due to the large quantities of data and high relativity of the spectra of remote sensing images, K-L transformation is used to eliminate the relativity. An improved ISODATA(Interative Self-Organizing Data Analysis Technique A) algorithm is used to extract the spectrum features of the images. The computation is greatly reduced and the dynamic arguments are realized. The comparison of features between two images is carried out, and good results are achieved in simulation.
文摘Road traffic is the important driving factor for economic and social development. With the rapid increase of vehicle population, road traffic problems such as traffic jam and traffic accident have become the bottleneck which restricts economic development. In recent years, natural disasters frequently occur in China. Therefore, it is essential to extract road information to compute the degree of road damage for traffic emergency management. A road extraction method based on region growing and mathematical morphology from remote sensing images is proposed in this paper. According to the road features, the remote sensing image is preprocessed to separate road regions from non-road regions preliminarily. After image thresholding, region growing algorithm is used to extract connected regions. Then we sort connected regions by area to exclude the small regions which are probably non-road objects. Finally, the mathematical morphology algorithm is used to fill the holes inside the road regions. The experimental results show that the method proposed can effectively extract roads from remote sensing images. This research also has broad prospects in dealing with traffic emergency management by the government.
文摘Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation elements of river basins.The main research of this paper were as follows:(1)a typical vegetation extraction sample set based on low-altitude remote sensing images was established.(2)A low-altitude remote sensing image vegetation extraction model based on the focus perception module was designed to realize the end-to-end automatic extraction of different types of vegetation areas of low-altitude remote sensing images to fully learn the spectral spatial texture information and deep semantic information of the images.(3)By comparison with the baseline method,baseline method with embedded focus perception module showed an improvement in the precision by 7.37%and mIoU by 49.49%.Through visual interpretation and quantitative calculation analysis,the typical river vegetation adaptive extraction network has effectiveness and generalization ability,consistent with the needs of practical applications of vegetation extraction.
基金sponsored by National Key R&D Program of China(2018YFC1504504)Youth Foundation of Yunnan Earthquake Agency(2021K01)Project of Yunnan Earthquake Agency“Chuan bang dai”(CQ3-2021001).
文摘In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.
基金supported in part by the National Natural Science Foundation of China under Grants(62250410365,62071084)the Guangdong Basic and Applied Basic Research Foundation of China(2022A1515011542)the Guangzhou Science and technology program of China(202201010606).
文摘With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and computer vision has hit the industrial world and makes it possible to apply Artificial intelligence to solve problems such as automatic extraction of information and image interpretation.However,due to the complex architecture of IoT and the lack of a unified security protection mechanism,devices in remote sensing are vulnerable to privacy leaks when sharing data.It is necessary to design a security scheme suitable for computation‐limited devices in IoT,since traditional encryption methods are based on computational complexity.Visual Cryptography(VC)is a threshold scheme for images that can be decoded directly by the human visual system when superimposing encrypted images.The stacking‐to‐see feature and simple Boolean decryption operation make VC an ideal solution for privacy‐preserving recognition for large‐scale remote sensing images in IoT.In this study,the secure and efficient transmission of high‐resolution remote sensing images by meaningful VC is achieved.By diffusing the error between the encryption block and the original block to adjacent blocks,the degradation of quality in recovery images is mitigated.By fine‐tuning the pre‐trained model from large‐scale datasets,we improve the recognition performance of small encryption datasets for remote sensing images.The experimental results show that the proposed lightweight privacy‐preserving recognition framework maintains high recognition performance while enhancing security.
文摘Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.
文摘This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.
基金funded by the Major Scientific and Technological Innovation Project of Shandong Province,Grant No.2022CXGC010609.
文摘Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.
文摘A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process.
文摘With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.
基金Supported by the High Technology Research and Development Programme of China (2001AA135091) and the National Natural Science Foundation of China (60375008).
文摘IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.
基金National Natural Science Foundation of China(No.61101202)
文摘Remote sensing image classification is the basis of remote sensing image analysis and understanding.It aims to assign each pixel an object class label.To achieve satisfactory classification accuracy,single feature is not enough.Multiple features are usually integrated in remote sensing image classification.In this paper,a method based on neural network to combine multiple features was proposed.A single network was used to perform the task instead of ensemble of neural networks.A special architecture of network was designed to fit the task.The method effectively avoids the problems in direct conjunction of multiple features.Experiments on Indian93 data set show that the method has obvious advantages over conjunction of features on both recognition rate and training time.