The research activities on warm dense matter driven by intense heavy ion beams at the new project High Intensity heavy-ion AcceleratorFacility (HIAF) are presented. The ion beam parameters and the simulated accessible...The research activities on warm dense matter driven by intense heavy ion beams at the new project High Intensity heavy-ion AcceleratorFacility (HIAF) are presented. The ion beam parameters and the simulated accessible state of matter at HIAF are introduced, respectively. Theprogresses of the developed diagnostics for warm dense matter research including high energy electron radiography, multiple-channel pyrometer,in-situ energy loss and charge state of ion detector are briefly introduced.展开更多
The study of structure, thermodynamic state, equation of state(EOS) and transport properties of warm dense matter(WDM) has become one of the key aspects of laboratory astrophysics. This field has demonstrated its impo...The study of structure, thermodynamic state, equation of state(EOS) and transport properties of warm dense matter(WDM) has become one of the key aspects of laboratory astrophysics. This field has demonstrated its importance not only concerning the internal structure of planets, but also other astrophysical bodies such as brown dwarfs, crusts of old stars or white dwarf stars. There has been a rapid increase in interest and activity in this field over the last two decades owing to many technological advances including not only the commissioning of high energy optical laser systems, zpinches and X-ray free electron lasers, but also short-pulse laser facilities capable of generation of novel particle and X-ray sources. Many new diagnostic methods have been developed recently to study WDM in its full complexity. Even ultrafast nonequilibrium dynamics has been accessed for the first time thanks to subpicosecond laser pulses achieved at new facilities. Recent years saw a number of major discoveries with direct implications to astrophysics such as the formation of diamond at pressures relevant to interiors of frozen giant planets like Neptune, metallic hydrogen under conditions such as those found inside Jupiter’s dynamo or formation of lonsdaleite crystals under extreme pressures during asteroid impacts on celestial bodies. This paper provides a broad review of the most recent experimental work carried out in this field with a special focus on the methods used. All typical schemes used to produce WDM are discussed in detail. Most of the diagnostic techniques recently established to probe WDM are also described. This paper also provides an overview of the most prominent examples of these methods used in experiments. Even though the main emphasis of the publication is experimental work focused on laboratory astrophysics primarily at laser facilities, a brief outline of other methods such as dynamic compression with z-pinches and static compression using diamond anvil cells(DAC) is also included. Some relevant theoretical and computational efforts related to WDM and astrophysics are mentioned in this review.展开更多
ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensit...ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.展开更多
We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios; stran...We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios; strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.展开更多
The structural properties of asymmetrical nuclear matter have been calculated,employing the AV 18 potential for different values of proton to neutron ratio.These calculations have also been made for the case of symmet...The structural properties of asymmetrical nuclear matter have been calculated,employing the AV 18 potential for different values of proton to neutron ratio.These calculations have also been made for the case of symmetrical nuclear matter with the UV14,AV14 and AV 18 potentials.In our calculations,we used the lowest order constrained variational method to compute the correlation function of the system.展开更多
In October 2022,the magnetar SGR J1935+2154 entered the active outburst state.During the episode,the InsightHXMT satellite carried out a long observation that lasted for 20 days.More than 300 bursts were detected,and ...In October 2022,the magnetar SGR J1935+2154 entered the active outburst state.During the episode,the InsightHXMT satellite carried out a long observation that lasted for 20 days.More than 300 bursts were detected,and a certain amount of persistent radiation signals were also accumulated.This paper mainly introduces the results of persistent radiation profile folding and period search based on Insight-HXMT data.At the same time,the burst phase distribution characteristics,spectral lag results of burst,the spectral characteristics of zero-lag bursts and the time-resolved spectral evolution characteristics of high-flux bursts are reported.We found that there is no significant delay feature during different energy bands for the bursts of SGR J1935+2154.The observed zero-lag burst does not have a unique spectrum.The time-resolved spectrum of the individual burst has consistent spectral types and spectral parameters at different time periods of the burst.We also find that the burst number phase distribution and the burst photon phase distribution have the same tendency to concentrate in specific regions of the persistent emission profile.展开更多
We review the development of High Energy Density Physics(HEDP)with intense heavy ion beams as a tool to induce extreme states of matter.The development of this field connects intimately to the advances in accelerator ...We review the development of High Energy Density Physics(HEDP)with intense heavy ion beams as a tool to induce extreme states of matter.The development of this field connects intimately to the advances in accelerator physics and technology.We will cover the generation of intense heavy ion beams starting from the ion source and follow the acceleration process and transport to the target.Intensity limitations and potential solutions to overcome these limitations are discussed.This is exemplified by citing examples from existing machines at the Gesellschaft fur Schwerionenforschung(GSI-Darmstadt),the Institute of Theoretical and Experimental Physics in Moscow(ITEP-Moscow),and the Institute of Modern Physics(IMP-Lanzhou).Facilities under construction like the FAIR facility in Darmstadt and the High Intensity Accelerator Facility(HIAF),proposed for China will be included.Developments elsewhere are covered where it seems appropriate along with a report of recent results and achievements.展开更多
Research activities in Japan relevant to particle beam inertial fusion are briefly reviewed.These activities can be ascended to the 1980s.During the past three decades,significant progress in particle beam fusion,puls...Research activities in Japan relevant to particle beam inertial fusion are briefly reviewed.These activities can be ascended to the 1980s.During the past three decades,significant progress in particle beam fusion,pulsed power systems,accelerator schemes for intense beams,target physics,and high-energy-density physics research has been made by a number of research groups at universities and accelerator facilities in Japan.High-flux ions have been extracted from laser ablation plasmas.Controllability of the ion velocity distribution in the plasma by an axial magnetic and/or electric field has realized a stable high-flux low-emittance beam injector.Beam dynamics have been studied both theoretically and experimentally.The efforts have been concentrated on the beam behavior during the final compression stage of intense beam accelerators.A novel accelerator scheme based on a repetitive induction modulator has been proposed as a cost-effective particle-beam driver scheme.Beam-plasma interaction and pulse-powered plasma experiments have been investigated as relevant studies of particle beam inertial fusion.An irradiation method to mitigate the instability in imploding target has been proposed using oscillating heavy-ion beams.The new irradiation method has reopened the exploration of direct drive scheme of particle beam fusion.展开更多
The state of supranuclear matter in compact stars remains puzzling,and it is argued that pulsars could be strangeon stars.The consequences of merging double strangeon stars are worth exploring,especially in the new er...The state of supranuclear matter in compact stars remains puzzling,and it is argued that pulsars could be strangeon stars.The consequences of merging double strangeon stars are worth exploring,especially in the new era of multi-messenger astronomy.To develop the"strangeon kilonova"scenario proposed in Paper I,we make a qualitative description about the evolution of ejecta and light curves for merging double strangeon stars.In the hot environment of the merger,the strangeon nuggets ejected by tidal disruption and hydrodynamical squeezing would suffer from evaporation,in which process particles,such as strangeons,neutrons and protons,are emitted.Taking into account both the evaporation of strangeon nuggets and the decay of strangeons,most of the strangeon nuggets would turn into neutrons and protons,within dozens of milliseconds after being ejected.The evaporation rates of different particles depend on temperature,and we find that the ejecta could end up with two components,with high and low opacity respectively.The high opacity component would be in the directions around the equatorial plane,and the low opacity component would be in a broad range of angular directions.The bolometric light curves show that the spin-down power of the long-lived remnant would account for the whole emission of kilonova AT2017gfo associated with GW170817,if the total ejected mass 10^(-3)M⊙.The detailed picture of merging double strangeon stars is expected to be tested by future numerical simulations.展开更多
We have calculated some properties of spin polarized strange quark matter(SQM) in a strong magnetic field at zero temperature using the MIT bag model.We showed that the equation of state of spin polarized SQM is sti...We have calculated some properties of spin polarized strange quark matter(SQM) in a strong magnetic field at zero temperature using the MIT bag model.We showed that the equation of state of spin polarized SQM is stiffer than that for unpolarized cases.We have also computed the structural properties of a spin polarized strange quark star(SQS) and found that the presence of a magnetic field leads to a more stable SQS when compared to the structural properties of an unpolarized SQS.展开更多
Using a realistic equation of state (EOS) of strange quark matter, namely, the modified bag model, and considering the constraints on the parameters of EOS by the observational mass limit of neutron stars, we invest...Using a realistic equation of state (EOS) of strange quark matter, namely, the modified bag model, and considering the constraints on the parameters of EOS by the observational mass limit of neutron stars, we investigate the r-mode instability window of strange stars, and find the same result as in the brief study of Haskell, Degenaar and Ho in 2012 that these instability windows are not consistent with the spin frequency and temperature observations of neutron stars in low mass X-ray binaries.展开更多
We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (-1.6 M⊙) and radius (-10km). Together with a broad collecti...We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (-1.6 M⊙) and radius (-10km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.展开更多
The deconfinement phase transition from hadronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field theory, where the s...The deconfinement phase transition from hadronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field theory, where the scalar-isovector 6-meson effec- tive field is also taken into account. The MIT bag model for describing a quark phase is used. The changes of the parameters of phase transition caused by the presence of a δ-meson field are explored. Finally, alterations in the integral and structural parameters of hybrid stars due to both a deconfinement phase transition and inclusion of a δ-meson field are discussed.展开更多
We have calculated the structural properties of a strange quark star with a static model in the presence of a strong magnetic field. To this end, we use the MIT bag model with a density dependent bag constant. To para...We have calculated the structural properties of a strange quark star with a static model in the presence of a strong magnetic field. To this end, we use the MIT bag model with a density dependent bag constant. To parameterize the density dependence of the bag constant, we have used our results for the lowest order constrained variational calculation of the asymmetric nuclear matter. By calculating the equation of state of strange quark matter, we have shown that the pressure of this system increases by increasing both density and magnetic field. Finally, we have investigated the effect of density dependence of the bag constant on the structural properties of a strange quark star.展开更多
Using an isospin- and momentum-dependent hadronic transport model, we investigate effects of the symmetry energy on several collective flows in heavy-ion collisions induced by radioactive beams at intermediate energie...Using an isospin- and momentum-dependent hadronic transport model, we investigate effects of the symmetry energy on several collective flows in heavy-ion collisions induced by radioactive beams at intermediate energies. It is found that the neutron-proton differential directed flow and the neutron-proton differential elliptic flow are strongly correlated with the symmetry energy, while the position averaged radial flow is weakly correlated with the symmetry energy.展开更多
In this study,we calculated transport coefficients including the shear viscosity and electrical conductivity relative to the density of dense hadronic and quark matter.By considering the simple massless limit for the ...In this study,we calculated transport coefficients including the shear viscosity and electrical conductivity relative to the density of dense hadronic and quark matter.By considering the simple massless limit for the quark matter and two different effective models for the hadronic matter,we estimated the transport coefficients of the two phases separately.Accordingly,density profiles of the transport coefficients were depicted in two parts:the phasespace part and the relaxation time part.From calculating the shear viscosity to density ratio,we also explored the nearly perfect fluid domain of the quark and hadronic matter.展开更多
The ^1 S0 nucleonic superfluids are investigated within the relativistic meanfield model and Bardeen-Cooper-Schrieffer theory in hyperonic neutron stars. The ^1 S0 pairing gaps of neutrons and protons are calculated b...The ^1 S0 nucleonic superfluids are investigated within the relativistic meanfield model and Bardeen-Cooper-Schrieffer theory in hyperonic neutron stars. The ^1 S0 pairing gaps of neutrons and protons are calculated based on the Reid soft-core interaction as the nucleon-nucleon interaction. In particular, we have studied the influence of degrees of freedom for hyperons on the ^1 S0 nucleonic pairing gap in neutron star matter. It is found that the appearance of hyperons has little impact on the baryonic density range and the size of the ^1S0 neutronic pairing gap; the ^1S0 protonic pairing gap also decreases slightly in this region where ρB = 0.0-0.393 fm^-3. However, if baryonic density becomes greater than 0.393 fm^-3, the ^1S0 protonic pairing gap obviously increases. In addition, the possible range for a protonic superfluid is obviously enlarged due to the presence of hyperons. In our results, the hyperons change the 1 So protonic pairing gap, which must change the cooling properties of neutron stars.展开更多
We investigate the effects of strong magnetic fields upon the large-scale properties of neutron and protoneutron stars. In our calculations, the neutron star mat- ter was approximated by pure neutron matter. Using the...We investigate the effects of strong magnetic fields upon the large-scale properties of neutron and protoneutron stars. In our calculations, the neutron star mat- ter was approximated by pure neutron matter. Using the lowest order constrained vari- ational approach at zero and finite temperatures, and employing AV18 potential, we present the effects of strong magnetic fields on the gravitational mass, radius, and gravitational redshift of neutron and protoneutron stars. It is found that the equation of state for a neutron star becomes stiffer with an increase of magnetic field and tem- perature. This leads to larger values of the maximum mass and radius for the neutron stars.展开更多
The mass-radius relations for bare and crusted strange stars are calculated with the bag model. Comparing these relations with the observed one derived from the redshift of EXO 0748–676, we come to the conclusion tha...The mass-radius relations for bare and crusted strange stars are calculated with the bag model. Comparing these relations with the observed one derived from the redshift of EXO 0748–676, we come to the conclusion that it is incorrect to say that EXO 0748–676 cannot be a strange star. Various strange star models can show that EXO 0748–676 could have a mass of (1.3 ~ 1.7)M<SUB>☉</SUB> and a radius of (8.4 ~ 11.4) km. It is proposed that a proportion of nascent strange stars could be bare and have masses ~ 0.1M<SUB>☉</SUB>, and their masses increased over a long period of accretion.展开更多
There is a ^3P2 neutron superfluid region in NS (neutron star) interior. For a rotating NS the ^3P2 superfluid region is like a system of rotating magnetic dipoles. It will give out electromagnetic radiation, which ...There is a ^3P2 neutron superfluid region in NS (neutron star) interior. For a rotating NS the ^3P2 superfluid region is like a system of rotating magnetic dipoles. It will give out electromagnetic radiation, which may provide a new heating mechanism of NSs. This mechanism plus some cooling agent may give a sound explanation to NS glitches.展开更多
基金This work was supported by the National Science Foun-dation of China(NSFC,Grant Nos.U1532263,11205225,11275241,11375034,11505248 and 11275238).
文摘The research activities on warm dense matter driven by intense heavy ion beams at the new project High Intensity heavy-ion AcceleratorFacility (HIAF) are presented. The ion beam parameters and the simulated accessible state of matter at HIAF are introduced, respectively. Theprogresses of the developed diagnostics for warm dense matter research including high energy electron radiography, multiple-channel pyrometer,in-situ energy loss and charge state of ion detector are briefly introduced.
基金supported by the Helmholtz Association under VH-NG1338
文摘The study of structure, thermodynamic state, equation of state(EOS) and transport properties of warm dense matter(WDM) has become one of the key aspects of laboratory astrophysics. This field has demonstrated its importance not only concerning the internal structure of planets, but also other astrophysical bodies such as brown dwarfs, crusts of old stars or white dwarf stars. There has been a rapid increase in interest and activity in this field over the last two decades owing to many technological advances including not only the commissioning of high energy optical laser systems, zpinches and X-ray free electron lasers, but also short-pulse laser facilities capable of generation of novel particle and X-ray sources. Many new diagnostic methods have been developed recently to study WDM in its full complexity. Even ultrafast nonequilibrium dynamics has been accessed for the first time thanks to subpicosecond laser pulses achieved at new facilities. Recent years saw a number of major discoveries with direct implications to astrophysics such as the formation of diamond at pressures relevant to interiors of frozen giant planets like Neptune, metallic hydrogen under conditions such as those found inside Jupiter’s dynamo or formation of lonsdaleite crystals under extreme pressures during asteroid impacts on celestial bodies. This paper provides a broad review of the most recent experimental work carried out in this field with a special focus on the methods used. All typical schemes used to produce WDM are discussed in detail. Most of the diagnostic techniques recently established to probe WDM are also described. This paper also provides an overview of the most prominent examples of these methods used in experiments. Even though the main emphasis of the publication is experimental work focused on laboratory astrophysics primarily at laser facilities, a brief outline of other methods such as dynamic compression with z-pinches and static compression using diamond anvil cells(DAC) is also included. Some relevant theoretical and computational efforts related to WDM and astrophysics are mentioned in this review.
基金The authors acknowledge support from the project ELI:Extreme Light Infrastructure from European Regional Devel-opment(CZ.02.1.01/0.0/0.0/15-008/0000162)Also supported by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15-003/0000449)from European Regional Development Fund.
文摘ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.
基金Supported by the National Natural Science Foundation of China.
文摘We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios; strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.
基金supported by the Research Institute for Astronomy and Astrophysics of Maragha
文摘The structural properties of asymmetrical nuclear matter have been calculated,employing the AV 18 potential for different values of proton to neutron ratio.These calculations have also been made for the case of symmetrical nuclear matter with the UV14,AV14 and AV 18 potentials.In our calculations,we used the lowest order constrained variational method to compute the correlation function of the system.
基金supported by International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)by the National Key R&D Program of China(2021YFA0718500)from the Minister of Science and Technology of China(MOST)supports from the National Natural Science Foundation of China under Grants U1938109,12333007,12173103,U2038101,U1938103,12333007,12303045,U1938201 and 11733009。
文摘In October 2022,the magnetar SGR J1935+2154 entered the active outburst state.During the episode,the InsightHXMT satellite carried out a long observation that lasted for 20 days.More than 300 bursts were detected,and a certain amount of persistent radiation signals were also accumulated.This paper mainly introduces the results of persistent radiation profile folding and period search based on Insight-HXMT data.At the same time,the burst phase distribution characteristics,spectral lag results of burst,the spectral characteristics of zero-lag bursts and the time-resolved spectral evolution characteristics of high-flux bursts are reported.We found that there is no significant delay feature during different energy bands for the bursts of SGR J1935+2154.The observed zero-lag burst does not have a unique spectrum.The time-resolved spectrum of the individual burst has consistent spectral types and spectral parameters at different time periods of the burst.We also find that the burst number phase distribution and the burst photon phase distribution have the same tendency to concentrate in specific regions of the persistent emission profile.
基金support of the German BMBF is acknowledged for many supporting grants for PRIOR,cryo-target development,beam diagnostics and material properties researchthe support of DFGRFBR(German Science Foundation-Russian Foundation of Basic Research)+1 种基金the Russian grant of Scientific school НШ-5814.2014.2 is acknowledgedgrateful for funding from National Natural Science Foundation of China NSFC grants Nos.:U1532263,11505248,11375034,11205225,11275241,and 11275238.
文摘We review the development of High Energy Density Physics(HEDP)with intense heavy ion beams as a tool to induce extreme states of matter.The development of this field connects intimately to the advances in accelerator physics and technology.We will cover the generation of intense heavy ion beams starting from the ion source and follow the acceleration process and transport to the target.Intensity limitations and potential solutions to overcome these limitations are discussed.This is exemplified by citing examples from existing machines at the Gesellschaft fur Schwerionenforschung(GSI-Darmstadt),the Institute of Theoretical and Experimental Physics in Moscow(ITEP-Moscow),and the Institute of Modern Physics(IMP-Lanzhou).Facilities under construction like the FAIR facility in Darmstadt and the High Intensity Accelerator Facility(HIAF),proposed for China will be included.Developments elsewhere are covered where it seems appropriate along with a report of recent results and achievements.
文摘Research activities in Japan relevant to particle beam inertial fusion are briefly reviewed.These activities can be ascended to the 1980s.During the past three decades,significant progress in particle beam fusion,pulsed power systems,accelerator schemes for intense beams,target physics,and high-energy-density physics research has been made by a number of research groups at universities and accelerator facilities in Japan.High-flux ions have been extracted from laser ablation plasmas.Controllability of the ion velocity distribution in the plasma by an axial magnetic and/or electric field has realized a stable high-flux low-emittance beam injector.Beam dynamics have been studied both theoretically and experimentally.The efforts have been concentrated on the beam behavior during the final compression stage of intense beam accelerators.A novel accelerator scheme based on a repetitive induction modulator has been proposed as a cost-effective particle-beam driver scheme.Beam-plasma interaction and pulse-powered plasma experiments have been investigated as relevant studies of particle beam inertial fusion.An irradiation method to mitigate the instability in imploding target has been proposed using oscillating heavy-ion beams.The new irradiation method has reopened the exploration of direct drive scheme of particle beam fusion.
基金supported by the National SKA Program of China(Grant No.2020SKA0120300)the National Key R&D Program of China(Grant No.2017YFA0402602)+3 种基金the National Natural Science Foundation of China(Grant Nos.U1831104,11673002,U1531243,11705163,11822302 and 11803007)the Strategic Priority Research Program of CAS(Grant No.XDB23010200)Ningbo Natural Science Foundation(Grant No.2019A610066)provided by China Scholarship Council during a visit by C.-J.X to JAEA is acknowledged。
文摘The state of supranuclear matter in compact stars remains puzzling,and it is argued that pulsars could be strangeon stars.The consequences of merging double strangeon stars are worth exploring,especially in the new era of multi-messenger astronomy.To develop the"strangeon kilonova"scenario proposed in Paper I,we make a qualitative description about the evolution of ejecta and light curves for merging double strangeon stars.In the hot environment of the merger,the strangeon nuggets ejected by tidal disruption and hydrodynamical squeezing would suffer from evaporation,in which process particles,such as strangeons,neutrons and protons,are emitted.Taking into account both the evaporation of strangeon nuggets and the decay of strangeons,most of the strangeon nuggets would turn into neutrons and protons,within dozens of milliseconds after being ejected.The evaporation rates of different particles depend on temperature,and we find that the ejecta could end up with two components,with high and low opacity respectively.The high opacity component would be in the directions around the equatorial plane,and the low opacity component would be in a broad range of angular directions.The bolometric light curves show that the spin-down power of the long-lived remnant would account for the whole emission of kilonova AT2017gfo associated with GW170817,if the total ejected mass 10^(-3)M⊙.The detailed picture of merging double strangeon stars is expected to be tested by future numerical simulations.
基金supported by the Research Institute for Astronomy and Astrophysics of Maragha
文摘We have calculated some properties of spin polarized strange quark matter(SQM) in a strong magnetic field at zero temperature using the MIT bag model.We showed that the equation of state of spin polarized SQM is stiffer than that for unpolarized cases.We have also computed the structural properties of a spin polarized strange quark star(SQS) and found that the presence of a magnetic field leads to a more stable SQS when compared to the structural properties of an unpolarized SQS.
基金Supported by the National Natural Science Foundation of China
文摘Using a realistic equation of state (EOS) of strange quark matter, namely, the modified bag model, and considering the constraints on the parameters of EOS by the observational mass limit of neutron stars, we investigate the r-mode instability window of strange stars, and find the same result as in the brief study of Haskell, Degenaar and Ho in 2012 that these instability windows are not consistent with the spin frequency and temperature observations of neutron stars in low mass X-ray binaries.
基金funded by the National Basic Research Program of China (Grant No. 2009CB824800)the National Natural Science Foundation of China (Grant No. 10905048)the Youth Innovation Foundation of FujianProvince (Grant No. 2009J05013)
文摘We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (-1.6 M⊙) and radius (-10km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.
基金supported by the Ministry of Education and Sciences of the Republic of Armenia under grant 2008-130
文摘The deconfinement phase transition from hadronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field theory, where the scalar-isovector 6-meson effec- tive field is also taken into account. The MIT bag model for describing a quark phase is used. The changes of the parameters of phase transition caused by the presence of a δ-meson field are explored. Finally, alterations in the integral and structural parameters of hybrid stars due to both a deconfinement phase transition and inclusion of a δ-meson field are discussed.
基金the Research Institute for Astronomy and Astrophysics of Maragha
文摘We have calculated the structural properties of a strange quark star with a static model in the presence of a strong magnetic field. To this end, we use the MIT bag model with a density dependent bag constant. To parameterize the density dependence of the bag constant, we have used our results for the lowest order constrained variational calculation of the asymmetric nuclear matter. By calculating the equation of state of strange quark matter, we have shown that the pressure of this system increases by increasing both density and magnetic field. Finally, we have investigated the effect of density dependence of the bag constant on the structural properties of a strange quark star.
基金Supported by the Knowledge Innovation Project of Chinese Academy of Science under Grant No KJCX2-SW-N02, the Major State Basic Research Development Program of China under Grant No G2000077400, the National Natural Science Foundation of China under Grant No 10235030, the Important Pre-research Project of the Ministry of Science and Technology of China under Grant No 2002CCB00200, the U.S. National Science Foundation under Grant Nos PHY0243571 and PHY0354572, and the K. C.Wong Education Foundation. Hong Kong.
文摘Using an isospin- and momentum-dependent hadronic transport model, we investigate effects of the symmetry energy on several collective flows in heavy-ion collisions induced by radioactive beams at intermediate energies. It is found that the neutron-proton differential directed flow and the neutron-proton differential elliptic flow are strongly correlated with the symmetry energy, while the position averaged radial flow is weakly correlated with the symmetry energy.
基金institute postdoctoral funding and research facilities at Indian Institute of Science Education and Research Berhampur,Odisha at the initial stage of this workfunding support of IFCPAR/CEFIPRA under Project(5804-3)。
文摘In this study,we calculated transport coefficients including the shear viscosity and electrical conductivity relative to the density of dense hadronic and quark matter.By considering the simple massless limit for the quark matter and two different effective models for the hadronic matter,we estimated the transport coefficients of the two phases separately.Accordingly,density profiles of the transport coefficients were depicted in two parts:the phasespace part and the relaxation time part.From calculating the shear viscosity to density ratio,we also explored the nearly perfect fluid domain of the quark and hadronic matter.
基金Supported by the National Natural Science Foundation of China
文摘The ^1 S0 nucleonic superfluids are investigated within the relativistic meanfield model and Bardeen-Cooper-Schrieffer theory in hyperonic neutron stars. The ^1 S0 pairing gaps of neutrons and protons are calculated based on the Reid soft-core interaction as the nucleon-nucleon interaction. In particular, we have studied the influence of degrees of freedom for hyperons on the ^1 S0 nucleonic pairing gap in neutron star matter. It is found that the appearance of hyperons has little impact on the baryonic density range and the size of the ^1S0 neutronic pairing gap; the ^1S0 protonic pairing gap also decreases slightly in this region where ρB = 0.0-0.393 fm^-3. However, if baryonic density becomes greater than 0.393 fm^-3, the ^1S0 protonic pairing gap obviously increases. In addition, the possible range for a protonic superfluid is obviously enlarged due to the presence of hyperons. In our results, the hyperons change the 1 So protonic pairing gap, which must change the cooling properties of neutron stars.
基金supported financially by the Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)
文摘We investigate the effects of strong magnetic fields upon the large-scale properties of neutron and protoneutron stars. In our calculations, the neutron star mat- ter was approximated by pure neutron matter. Using the lowest order constrained vari- ational approach at zero and finite temperatures, and employing AV18 potential, we present the effects of strong magnetic fields on the gravitational mass, radius, and gravitational redshift of neutron and protoneutron stars. It is found that the equation of state for a neutron star becomes stiffer with an increase of magnetic field and tem- perature. This leads to larger values of the maximum mass and radius for the neutron stars.
基金Supported by the National Natural Science Foundation of China.
文摘The mass-radius relations for bare and crusted strange stars are calculated with the bag model. Comparing these relations with the observed one derived from the redshift of EXO 0748–676, we come to the conclusion that it is incorrect to say that EXO 0748–676 cannot be a strange star. Various strange star models can show that EXO 0748–676 could have a mass of (1.3 ~ 1.7)M<SUB>☉</SUB> and a radius of (8.4 ~ 11.4) km. It is proposed that a proportion of nascent strange stars could be bare and have masses ~ 0.1M<SUB>☉</SUB>, and their masses increased over a long period of accretion.
文摘There is a ^3P2 neutron superfluid region in NS (neutron star) interior. For a rotating NS the ^3P2 superfluid region is like a system of rotating magnetic dipoles. It will give out electromagnetic radiation, which may provide a new heating mechanism of NSs. This mechanism plus some cooling agent may give a sound explanation to NS glitches.