We used the geological map and published rock density measurements to compile the digital rock density model for the Hong Kong territories.We then estimated the average density for the whole territory.According to our...We used the geological map and published rock density measurements to compile the digital rock density model for the Hong Kong territories.We then estimated the average density for the whole territory.According to our result,the rock density values in Hong Kong vary from 2101 to 2681 kg·m^(-3).These density values are typically smaller than the average density of 2670 kg·m^(-3),often adopted to represent the average density of the upper continental crust in physical geodesy and gravimetric geophysics applications.This finding reflects that the geological configuration in Hong Kong is mainly formed by light volcanic formations and lava flows with overlying sedimentary deposits at many locations,while the percentage of heavier metamorphic rocks is very low(less than 1%).This product will improve the accuracy of a detailed geoid model and orthometric heights.展开更多
The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffract...The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.展开更多
From 1997 to 2000, four field surveys were conducted in the East China Sea (ECS) (23°30'-33°00'N, 118°30'-128°00'E). A field data yield density model was used to determine the optimal salin...From 1997 to 2000, four field surveys were conducted in the East China Sea (ECS) (23°30'-33°00'N, 118°30'-128°00'E). A field data yield density model was used to determine the optimal salinities for 19 dominant copepod species to establish the relationship between surface salinities and abundance of those species. In addition, ecological groups of the copepods were classified based on optimal salinity and geographical distribution. The results indicate that the yield density model is suitable for determining the relationship between salinity and abundance. Cosmocalanus darwini, Euchaeta rimana, Pleuromamma gracilis, Rhincalanus cornutus, Scolecithrix danae and Pareucalanus attenuatus were determined as oceanic species, with optimal salinities of 〉34.0. They were stenohaline and mainly distributed in waters influenced by the Kuroshio or Taiwan warm current. Temora discaudata, T. stylifera and Canthocalanus pauper were nearshore species with optimal salinities of 〈33.0 and most abundant in coastal waters. The remaining 10 species, including Undinula vulgaris and Subeucalanus suberassus, were offshore species, with optimal salinity ranging from 33.0-34.0. They were widely distributed in nearshore, offshore and oceanic waters but mainly in the mixed water of the ECS.展开更多
In this paper, we report a method by which the ion quantity is estimated rapidly with an accuracy of 4%. This finding is based on the low-temperature ion density theory and combined with the ion crystal size obtained ...In this paper, we report a method by which the ion quantity is estimated rapidly with an accuracy of 4%. This finding is based on the low-temperature ion density theory and combined with the ion crystal size obtained from experiment with the precision of a micrometer. The method is objective, straightforward, and independent of the molecular dynamics (MD) simulation. The result can be used as the reference for the MD simulation, and the method can improve the reliability and precision of MD simulation. This method is very helpful for intensively studying ion crystal, such as phase transition, spatial configuration, temporal evolution, dynamic character, cooling efficiency, and the temperature limit of the ions.展开更多
Heavy-medium cyclones are widely used to upgrade run-of-mine coal.But the understanding of flow in a cyclone containing a dense medium is still incomplete.By introducing turbulent diffusion into calculations of centri...Heavy-medium cyclones are widely used to upgrade run-of-mine coal.But the understanding of flow in a cyclone containing a dense medium is still incomplete.By introducing turbulent diffusion into calculations of centrifugal settling a theoretical distribution function giving the density field can be deduced.Qualitative analysis of the density field in every part of a cylindrical cyclone suggests an optimum design that has exhibited good separation effectiveness and anti-wear performance when in commercial operation.展开更多
Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling facto...Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds(FGM) method is employed to determine major scalars. This coupled sub-grid scale(SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence.The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively.展开更多
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat...Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions.展开更多
The methods of deriving FeO and TiO_(2)contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper(M3)instrume...The methods of deriving FeO and TiO_(2)contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper(M3)instrument on Chandrayaan-1.The density of lunar bedrock was then modeled on the basis of the derived FeO and TiO_(2)abundances.The FeO and TiO_(2)abundances derived from the M^(3)data were compared with the previous results of the Clementine data and were in good agreement.The FeO abundance data also agreed well with the Lunar Prospector data,which were used as an independent source.The previous Clementine and newly M3 derived abundances were compared with the laboratory measured FeO and TiO2 contents in the Apollo and Luna returned samples.The Clementine derived FeO content was systematically 1%–2%lower than the laboratory measurements in all the returned samples.The M^(3)derived content agreed well with the returned Apollo samples and was within±2.8%of the laboratory measurements.The Clementine derived TiO2 abundance was systematically 0.1%–4%higher than the laboratory measurements of the returned samples.The M3 derived TiO_(2)agreed well(±0.6%)with the laboratory measurements of the returned samples,except for samples with high TiO2 content.However,these results should be carefully interpreted because the error range requires verification.No error analysis was provided with the previous Clementine derived contents.展开更多
In this paper,we consider testing the hypothesis concerning the means of two independent semicontinuous distributions whose observations are zero-inflated,characterized by a sizable number of zeros and positive observ...In this paper,we consider testing the hypothesis concerning the means of two independent semicontinuous distributions whose observations are zero-inflated,characterized by a sizable number of zeros and positive observations from a continuous distribution.The continuous parts of the two semicontinuous distributions are assumed to follow a density ratio model.A new two-part test is developed for this kind of data.The proposed test takes the sum of one test for equality of proportions of zero values and one conditional test for the continuous distribution.The test is proved to follow a2 distribution with two degrees of freedom.Simulation studies show that the proposed test controls the type I error rates at the desired level,and is competitive to,and most of the time more powerful than two popular tests.A real data example from a dietary intervention study is used to illustrate the usefulness of the proposed test.展开更多
Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the...Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the particle PDF transport equations are di- rectly solved either using a finite-difference method for two-dimensional (2D) problems or using a Monte-Carlo (MC) method for three-dimensional (3D) problems. The proposed differential stress model together with the PDF (DSM-PDF) is used to simulate turbulent swirling gas-particle flows. The simulation results are compared with the experimental results and the second-order moment (SOM) two-phase modeling results. All of these simulation results are in agreement with the experimental results, implying that the PDF approach validates the SOM two-phase turbulence modeling. The PDF model with the SOM-MC method is used to simulate evaporating gas-droplet flows, and the simulation results are in good agreement with the experimental results.展开更多
This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary erro...This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.展开更多
We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phas...We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.展开更多
Character of population distribution is one of the focuses studied by urban geography. Using the fifth national census data as basic data and using areal interpolation method, this paper analyzes character of urban po...Character of population distribution is one of the focuses studied by urban geography. Using the fifth national census data as basic data and using areal interpolation method, this paper analyzes character of urban population dis- tribution of Shenyang City, Northeast China, in terms of three aspects of statistical character, spatial auto-correlation and spatial structure. Furthermore, this research analyzes the factors affecting the population distribution of the city. The main conclusions include: 1) There is an obvious structure character of population distribution in the grid with a grain of 300m, which is appropriate scale when researching population distribution in Shenyang City. 2) Urban population dis- tribution has the character of assembling while population density distribution takes on variability in Shenyang City. 3) Population density distribution shows spatial auto-correlation within 7.36km. Spatial heterogeneity of population density is low. 4) Urban center, population distribution barycenter and population density maximum points separate each other. Population density distribution has multi-cores character. 5) Layout of governments, primary schools, middle schools, colleges, hospitals and marketplaces affects population distribution directly. With the increase of distance to these factors, population density decreases as logarithm.展开更多
A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional G...A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively, and introduce the coupling effect coming from both fluctuations and equilibrium variances. The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived, based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique. We explicitly elaborate the short time and long time approximations. The relationship between the two-diraensional description and the one-dimensional theory is also discussed.展开更多
Using d'Alembert equation as the approximation of Einstein's equation, a solution is given in this paper to the time-dependent gravitational equation of the Earth in consideration of the Earth's features, ...Using d'Alembert equation as the approximation of Einstein's equation, a solution is given in this paper to the time-dependent gravitational equation of the Earth in consideration of the Earth's features, which describes the characteristics of pulsation of the Earth and the structures of spherical layers of its interior, thus providing a theoretical basis for establishing the idea of mantle pulsation.展开更多
An intelligent prediction method for fractures in tight carbonate reservoir has been established by upgrading single-well fracture identification and interwell fracture trend prediction with artificial intelligence,mo...An intelligent prediction method for fractures in tight carbonate reservoir has been established by upgrading single-well fracture identification and interwell fracture trend prediction with artificial intelligence,modifying construction of interwell fracture density model,and modeling fracture network and making fracture property equivalence.This method deeply mines fracture information in multi-source isomerous data of different scales to reduce uncertainties of fracture prediction.Based on conventional fracture indicating parameter method,a prediction method of single-well fractures has been worked out by using 3 kinds of artificial intelligence methods to improve fracture identification accuracy from 3 aspects,small sample classification,multi-scale nonlinear feature extraction,and decreasing variance of the prediction model.Fracture prediction by artificial intelligence using seismic attributes provides many details of inter-well fractures.It is combined with fault-related fracture information predicted by numerical simulation of reservoir geomechanics to improve inter-well fracture trend prediction.An interwell fracture density model for fracture network modeling is built by coupling single-well fracture identification and interwell fracture trend through co-sequential simulation.By taking the tight carbonate reservoir of Oligocene-Miocene AS Formation of A Oilfield in Zagros Basin of the Middle East as an example,the proposed prediction method was applied and verified.The single-well fracture identification improves over 15%compared with the conventional fracture indication parameter method in accuracy rate,and the inter-well fracture prediction improves over 25%compared with the composite seismic attribute prediction.The established fracture network model is well consistent with the fluid production index.展开更多
The cavitation cloud of different internal structures results in different collapse pressures owing to the interaction among bubbles. The internal structure of cloud cavitation is required to accurately predict collap...The cavitation cloud of different internal structures results in different collapse pressures owing to the interaction among bubbles. The internal structure of cloud cavitation is required to accurately predict collapse pressure. A cavitation model was developed through dimensional analysis and direct numerical simulation of collapse of bubble cluster. Bubble number density was included in proposed model to characterize the internal structure of bubble cloud. Implemented on flows over a projectile, the proposed model predicts a higher collapse pressure compared with Singhal model. Results indicate that the collapse pressure of detached cavitation cloud is affected by bubble number density.展开更多
Raman spectra of xLa203-(1-x)TeO2 (x=0, 0.05, 0.10, 0.15, 0.20, and 0.25) lanthanum tellurite glasses were measured and analyzed over the entire glass-forming region in an effort to quantitatively follow the struc...Raman spectra of xLa203-(1-x)TeO2 (x=0, 0.05, 0.10, 0.15, 0.20, and 0.25) lanthanum tellurite glasses were measured and analyzed over the entire glass-forming region in an effort to quantitatively follow the structural changes caused by lanthanum oxide variation. For the first time, systematic intensity measurements have been performed to elucidate the composition induced structural changes in tile high-frequency stretching vibration region and a possible mechanism was proposed. The network structure of the glasses is formed by mixing TeO4 trigonal bipyramid and Te03 trigonal pyramid units. The change of the lanthanum oxide content results in conversion of the TeO4 units to TeO3 units with a varying number of non-bridging oxygen atoms. Analysis of the Raman band contours in terms of vibrations due to different oxygen bridged trigonal bipyramid and trigonal pyramid tellurite structural units, allowed to calculate the relative amounts of the species involved in the structural changes with composition. The fraction of the terminal oxygen atoms has been estimated from the Raman intensities with the aid of a structural model concerning the structure of tellurite network systems. The simulation of the experimental density of lanthanum tellurite glasses with modifier content up to 25% revealed that the short range order building units assumed here are sufficient to account for the overall structure in these glasses.展开更多
Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The govern...Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The governing equations of turbulent buoyant jet with variable density were closed by introducing the expression of β and the relation between density and concentration. Numerical results for the jet axis with density difference agree well with experimental ones. By finite volume method, the 2 - D vertical jet's flow field with different jet angles was studied. The analysis of the relation among the vortex center, the position of separation point and jet angles shows that the circumfluenee field is the largest when the jet angle is 90°. The area turbulent kinetic energy ka is proposed and the relationship between mixing intensity and jet angles is analyzed based on it. Results show that the jet angle of is the optimum condition for jet water mixing with environment water;and the reduced rate of difference between the centerline density of jet and the density of ambient water is the largest at the jet angle of 90°.展开更多
Ni0.35Zn0.65Fe2O4 ferrite was synthesized by SHS method. In the process of SHS, combustion temperature and velocity were the main process parameters , which were decided by the Fe content, grain size of the ferrite po...Ni0.35Zn0.65Fe2O4 ferrite was synthesized by SHS method. In the process of SHS, combustion temperature and velocity were the main process parameters , which were decided by the Fe content, grain size of the ferrite powder, relative density and the oxygen pressure. In this paper the effects of Fe content, grain size and oxygen pressure on combustion temperature and velocity were discussed. The relation between combustion temperature and magnetic permeability was also studied and the method of polynomial regression was used to establish the mathematical model of the relation.展开更多
基金supported by the Hong Kong GRF RGC project 15217222:“Modernization of the leveling network in the Hong Kong territories.”。
文摘We used the geological map and published rock density measurements to compile the digital rock density model for the Hong Kong territories.We then estimated the average density for the whole territory.According to our result,the rock density values in Hong Kong vary from 2101 to 2681 kg·m^(-3).These density values are typically smaller than the average density of 2670 kg·m^(-3),often adopted to represent the average density of the upper continental crust in physical geodesy and gravimetric geophysics applications.This finding reflects that the geological configuration in Hong Kong is mainly formed by light volcanic formations and lava flows with overlying sedimentary deposits at many locations,while the percentage of heavier metamorphic rocks is very low(less than 1%).This product will improve the accuracy of a detailed geoid model and orthometric heights.
基金Project(51675465)supported by the National Natural Science Foundation of ChinaProject(E2019203075)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BJ2019001)supported by the Top Young Talents Project of the Education Department of Hebei Province,ChinaProject(Kfkt2017-07)supported by the State Key Laboratory Program of High Performance Complex Manufacturing,China。
文摘The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.
基金Supported by the National Natural Science Foundation of China (Nos. 40776047, 90511005)the National Basic Research Program of China (973 Project) (No. 2010CB428705)
文摘From 1997 to 2000, four field surveys were conducted in the East China Sea (ECS) (23°30'-33°00'N, 118°30'-128°00'E). A field data yield density model was used to determine the optimal salinities for 19 dominant copepod species to establish the relationship between surface salinities and abundance of those species. In addition, ecological groups of the copepods were classified based on optimal salinity and geographical distribution. The results indicate that the yield density model is suitable for determining the relationship between salinity and abundance. Cosmocalanus darwini, Euchaeta rimana, Pleuromamma gracilis, Rhincalanus cornutus, Scolecithrix danae and Pareucalanus attenuatus were determined as oceanic species, with optimal salinities of 〉34.0. They were stenohaline and mainly distributed in waters influenced by the Kuroshio or Taiwan warm current. Temora discaudata, T. stylifera and Canthocalanus pauper were nearshore species with optimal salinities of 〈33.0 and most abundant in coastal waters. The remaining 10 species, including Undinula vulgaris and Subeucalanus suberassus, were offshore species, with optimal salinity ranging from 33.0-34.0. They were widely distributed in nearshore, offshore and oceanic waters but mainly in the mixed water of the ECS.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB821301 and 2010CB832803)the National Natural Science Foundation of China(Grant Nos.11004222 and 91121016)the Chinese Academy of Sciences
文摘In this paper, we report a method by which the ion quantity is estimated rapidly with an accuracy of 4%. This finding is based on the low-temperature ion density theory and combined with the ion crystal size obtained from experiment with the precision of a micrometer. The method is objective, straightforward, and independent of the molecular dynamics (MD) simulation. The result can be used as the reference for the MD simulation, and the method can improve the reliability and precision of MD simulation. This method is very helpful for intensively studying ion crystal, such as phase transition, spatial configuration, temporal evolution, dynamic character, cooling efficiency, and the temperature limit of the ions.
基金supported by the National Natural Science Foundation of China(No.50921002)
文摘Heavy-medium cyclones are widely used to upgrade run-of-mine coal.But the understanding of flow in a cyclone containing a dense medium is still incomplete.By introducing turbulent diffusion into calculations of centrifugal settling a theoretical distribution function giving the density field can be deduced.Qualitative analysis of the density field in every part of a cylindrical cyclone suggests an optimum design that has exhibited good separation effectiveness and anti-wear performance when in commercial operation.
基金Project supported by the National Natural Science Foundation of China(Nos.91441117 and51576182)
文摘Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds(FGM) method is employed to determine major scalars. This coupled sub-grid scale(SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence.The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively.
基金supported by the National Key Research and Development Program of China (2016YFC0400207)the National Natural Science Foundation of China (51222905, 51621061, 51509130)+2 种基金the Natural Science Foundation of Jiangsu Province, China (BK20150908)the Discipline Innovative Engineering Plan (111 Program, B14002)the Jiangsu Key Laboratory of Agricultural Meteorology Foundation (JKLAM1601)
文摘Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions.
文摘The methods of deriving FeO and TiO_(2)contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper(M3)instrument on Chandrayaan-1.The density of lunar bedrock was then modeled on the basis of the derived FeO and TiO_(2)abundances.The FeO and TiO_(2)abundances derived from the M^(3)data were compared with the previous results of the Clementine data and were in good agreement.The FeO abundance data also agreed well with the Lunar Prospector data,which were used as an independent source.The previous Clementine and newly M3 derived abundances were compared with the laboratory measured FeO and TiO2 contents in the Apollo and Luna returned samples.The Clementine derived FeO content was systematically 1%–2%lower than the laboratory measurements in all the returned samples.The M^(3)derived content agreed well with the returned Apollo samples and was within±2.8%of the laboratory measurements.The Clementine derived TiO2 abundance was systematically 0.1%–4%higher than the laboratory measurements of the returned samples.The M3 derived TiO_(2)agreed well(±0.6%)with the laboratory measurements of the returned samples,except for samples with high TiO2 content.However,these results should be carefully interpreted because the error range requires verification.No error analysis was provided with the previous Clementine derived contents.
基金Supported by the National Natural Science Foundation of China(No.11971433)the First Class Discipline of Zhejiang-A(Zhejiang Gongshang University-Statistics)the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.
文摘In this paper,we consider testing the hypothesis concerning the means of two independent semicontinuous distributions whose observations are zero-inflated,characterized by a sizable number of zeros and positive observations from a continuous distribution.The continuous parts of the two semicontinuous distributions are assumed to follow a density ratio model.A new two-part test is developed for this kind of data.The proposed test takes the sum of one test for equality of proportions of zero values and one conditional test for the continuous distribution.The test is proved to follow a2 distribution with two degrees of freedom.Simulation studies show that the proposed test controls the type I error rates at the desired level,and is competitive to,and most of the time more powerful than two popular tests.A real data example from a dietary intervention study is used to illustrate the usefulness of the proposed test.
基金supported by the National Natural Science Foundation of China(No.51390493)
文摘Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the particle PDF transport equations are di- rectly solved either using a finite-difference method for two-dimensional (2D) problems or using a Monte-Carlo (MC) method for three-dimensional (3D) problems. The proposed differential stress model together with the PDF (DSM-PDF) is used to simulate turbulent swirling gas-particle flows. The simulation results are compared with the experimental results and the second-order moment (SOM) two-phase modeling results. All of these simulation results are in agreement with the experimental results, implying that the PDF approach validates the SOM two-phase turbulence modeling. The PDF model with the SOM-MC method is used to simulate evaporating gas-droplet flows, and the simulation results are in good agreement with the experimental results.
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(12510709400)+1 种基金Shanghai Municipal Education Commission(14ZZ088)Shanghai Talent Development Plan
文摘This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.
基金supported by the National Natural Science Foundation of China (Grant No. 11874263)the National Key R&D Program of China (Grant No. 2017YFE0131300)Shanghai Technology Innovation Action Plan (2020-Integrated Circuit Technology Support Program 20DZ1100605,2021-Fundamental Research Area 21JC1404700)。
文摘We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.
基金Under the auspices of Knowledge Innovation Program of Chines Academy of Sciences (No. KZCX2-SW-210-1)
文摘Character of population distribution is one of the focuses studied by urban geography. Using the fifth national census data as basic data and using areal interpolation method, this paper analyzes character of urban population dis- tribution of Shenyang City, Northeast China, in terms of three aspects of statistical character, spatial auto-correlation and spatial structure. Furthermore, this research analyzes the factors affecting the population distribution of the city. The main conclusions include: 1) There is an obvious structure character of population distribution in the grid with a grain of 300m, which is appropriate scale when researching population distribution in Shenyang City. 2) Urban population dis- tribution has the character of assembling while population density distribution takes on variability in Shenyang City. 3) Population density distribution shows spatial auto-correlation within 7.36km. Spatial heterogeneity of population density is low. 4) Urban center, population distribution barycenter and population density maximum points separate each other. Population density distribution has multi-cores character. 5) Layout of governments, primary schools, middle schools, colleges, hospitals and marketplaces affects population distribution directly. With the increase of distance to these factors, population density decreases as logarithm.
基金This work was supported by the National Natural Science Foundation of China (No.20973119 and No.21033008).
文摘A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively, and introduce the coupling effect coming from both fluctuations and equilibrium variances. The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived, based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique. We explicitly elaborate the short time and long time approximations. The relationship between the two-diraensional description and the one-dimensional theory is also discussed.
文摘Using d'Alembert equation as the approximation of Einstein's equation, a solution is given in this paper to the time-dependent gravitational equation of the Earth in consideration of the Earth's features, which describes the characteristics of pulsation of the Earth and the structures of spherical layers of its interior, thus providing a theoretical basis for establishing the idea of mantle pulsation.
基金Supported by the China Youth Program of National Natural Science Foundation(42002134)The 14th Special Support Program of China Postdoctoral Science Foundation(2021T140735).
文摘An intelligent prediction method for fractures in tight carbonate reservoir has been established by upgrading single-well fracture identification and interwell fracture trend prediction with artificial intelligence,modifying construction of interwell fracture density model,and modeling fracture network and making fracture property equivalence.This method deeply mines fracture information in multi-source isomerous data of different scales to reduce uncertainties of fracture prediction.Based on conventional fracture indicating parameter method,a prediction method of single-well fractures has been worked out by using 3 kinds of artificial intelligence methods to improve fracture identification accuracy from 3 aspects,small sample classification,multi-scale nonlinear feature extraction,and decreasing variance of the prediction model.Fracture prediction by artificial intelligence using seismic attributes provides many details of inter-well fractures.It is combined with fault-related fracture information predicted by numerical simulation of reservoir geomechanics to improve inter-well fracture trend prediction.An interwell fracture density model for fracture network modeling is built by coupling single-well fracture identification and interwell fracture trend through co-sequential simulation.By taking the tight carbonate reservoir of Oligocene-Miocene AS Formation of A Oilfield in Zagros Basin of the Middle East as an example,the proposed prediction method was applied and verified.The single-well fracture identification improves over 15%compared with the conventional fracture indication parameter method in accuracy rate,and the inter-well fracture prediction improves over 25%compared with the composite seismic attribute prediction.The established fracture network model is well consistent with the fluid production index.
基金support from the National Natural Science Foundation of China (11402276)
文摘The cavitation cloud of different internal structures results in different collapse pressures owing to the interaction among bubbles. The internal structure of cloud cavitation is required to accurately predict collapse pressure. A cavitation model was developed through dimensional analysis and direct numerical simulation of collapse of bubble cluster. Bubble number density was included in proposed model to characterize the internal structure of bubble cloud. Implemented on flows over a projectile, the proposed model predicts a higher collapse pressure compared with Singhal model. Results indicate that the collapse pressure of detached cavitation cloud is affected by bubble number density.
文摘Raman spectra of xLa203-(1-x)TeO2 (x=0, 0.05, 0.10, 0.15, 0.20, and 0.25) lanthanum tellurite glasses were measured and analyzed over the entire glass-forming region in an effort to quantitatively follow the structural changes caused by lanthanum oxide variation. For the first time, systematic intensity measurements have been performed to elucidate the composition induced structural changes in tile high-frequency stretching vibration region and a possible mechanism was proposed. The network structure of the glasses is formed by mixing TeO4 trigonal bipyramid and Te03 trigonal pyramid units. The change of the lanthanum oxide content results in conversion of the TeO4 units to TeO3 units with a varying number of non-bridging oxygen atoms. Analysis of the Raman band contours in terms of vibrations due to different oxygen bridged trigonal bipyramid and trigonal pyramid tellurite structural units, allowed to calculate the relative amounts of the species involved in the structural changes with composition. The fraction of the terminal oxygen atoms has been estimated from the Raman intensities with the aid of a structural model concerning the structure of tellurite network systems. The simulation of the experimental density of lanthanum tellurite glasses with modifier content up to 25% revealed that the short range order building units assumed here are sufficient to account for the overall structure in these glasses.
基金the Natural Science Foundation of Liaoning Province(Grant No.20032115)
文摘Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The governing equations of turbulent buoyant jet with variable density were closed by introducing the expression of β and the relation between density and concentration. Numerical results for the jet axis with density difference agree well with experimental ones. By finite volume method, the 2 - D vertical jet's flow field with different jet angles was studied. The analysis of the relation among the vortex center, the position of separation point and jet angles shows that the circumfluenee field is the largest when the jet angle is 90°. The area turbulent kinetic energy ka is proposed and the relationship between mixing intensity and jet angles is analyzed based on it. Results show that the jet angle of is the optimum condition for jet water mixing with environment water;and the reduced rate of difference between the centerline density of jet and the density of ambient water is the largest at the jet angle of 90°.
文摘Ni0.35Zn0.65Fe2O4 ferrite was synthesized by SHS method. In the process of SHS, combustion temperature and velocity were the main process parameters , which were decided by the Fe content, grain size of the ferrite powder, relative density and the oxygen pressure. In this paper the effects of Fe content, grain size and oxygen pressure on combustion temperature and velocity were discussed. The relation between combustion temperature and magnetic permeability was also studied and the method of polynomial regression was used to establish the mathematical model of the relation.