期刊文献+
共找到480篇文章
< 1 2 24 >
每页显示 20 50 100
Density Clustering Algorithm Based on KD-Tree and Voting Rules
1
作者 Hui Du Zhiyuan Hu +1 位作者 Depeng Lu Jingrui Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期3239-3259,共21页
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional... Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy. 展开更多
关键词 density peaks clustering KD-TREE K-nearest neighbors voting rules
下载PDF
K-means Find Density Peaks in Molecular Conformation Clustering 被引量:1
2
作者 Guiyan Wang Ting Fu +5 位作者 Hong Ren Peijun Xu Qiuhan Guo Xiaohong Mou Yan Li Guohui Li 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第2期353-368,I0026-I0030,I0003,共22页
Performing cluster analysis on molecular conformation is an important way to find the representative conformation in the molecular dynamics trajectories.Usually,it is a critical step for interpreting complex conformat... Performing cluster analysis on molecular conformation is an important way to find the representative conformation in the molecular dynamics trajectories.Usually,it is a critical step for interpreting complex conformational changes or interaction mechanisms.As one of the density-based clustering algorithms,find density peaks(FDP)is an accurate and reasonable candidate for the molecular conformation clustering.However,facing the rapidly increasing simulation length due to the increase in computing power,the low computing efficiency of FDP limits its application potential.Here we propose a marginal extension to FDP named K-means find density peaks(KFDP)to solve the mass source consuming problem.In KFDP,the points are initially clustered by a high efficiency clustering algorithm,such as K-means.Cluster centers are defined as typical points with a weight which represents the cluster size.Then,the weighted typical points are clustered again by FDP,and then are refined as core,boundary,and redefined halo points.In this way,KFDP has comparable accuracy as FDP but its computational complexity is reduced from O(n^(2))to O(n).We apply and test our KFDP method to the trajectory data of multiple small proteins in terms of torsion angle,secondary structure or contact map.The comparing results with K-means and density-based spatial clustering of applications with noise show the validation of the proposed KFDP. 展开更多
关键词 K-means find density peaks Molecular clustering density-based spatial clustering of applications with noise
下载PDF
Fast density peak-based clustering algorithm for multiple extended target tracking 被引量:3
3
作者 SHEN Xinglin SONG Zhiyong +1 位作者 FAN Hongqi FU Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期435-447,共13页
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen... The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter. 展开更多
关键词 FAST density peak-based clustering (Fdpc) MULTIPLE extended target partition probability hypothesis density (PHD) filter track.
下载PDF
Density peaks clustering based integrate framework for multi-document summarization 被引量:2
4
作者 BaoyanWang Jian Zhang +1 位作者 Yi Liu Yuexian Zou 《CAAI Transactions on Intelligence Technology》 2017年第1期26-30,共5页
We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based met... We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based methods proposed by other researchers tend to ignore informativeness of words when they generate summaries, our proposed framework takes relevance, diversity, informativeness and length constraint of sentences into consideration comprehensively. We apply Density Peaks Clustering (DPC) to get relevance scores and diversity scores of sentences simultaneously. Our framework produces the best performance on DUC2004, 0.396 of ROUGE-1 score, 0.094 of ROUGE-2 score and 0.143 of ROUGE-SU4 which outperforms a series of popular baselines, such as DUC Best, FGB [7], and BSTM [10]. 展开更多
关键词 Multi-document summarization Integrated score framework density peaks clustering Sentences rank
下载PDF
改进DPC聚类算法的离群点检测与解释方法
5
作者 周玉 夏浩 裴泽宣 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第8期68-85,共18页
为解决全局离群点检测方法无法对局部离群点进行检测,以及局部异常因子在面对大量局部离群点时性能下降的问题,利用k近邻(KNN)和核密度估计方法(KDE)提出一种基于改进快速搜索和发现密度峰值聚类算法(KDPC)的离群点检测与解释方法,该方... 为解决全局离群点检测方法无法对局部离群点进行检测,以及局部异常因子在面对大量局部离群点时性能下降的问题,利用k近邻(KNN)和核密度估计方法(KDE)提出一种基于改进快速搜索和发现密度峰值聚类算法(KDPC)的离群点检测与解释方法,该方法能够同时对数据点的全局和局部进行分析。首先,利用k近邻和核密度估计方法计算数据点的局部密度,代替传统DPC算法中根据截断距离计算的局部密度。其次,将数据点的k近邻距离之和作为全局异常值,并通过KDPC聚类算法计算簇密度以及数据点的局部异常值。最后,将数据点的全局与局部异常值进行乘积作为最终异常得分,选取异常得分最高的Top-n作为离群点,通过构建全局-局部异常值决策图对全局和局部离群点进行解释。利用人工数据集和UCI数据集进行实验并与10种常用离群点检测方法进行比较。结果表明,该方法对全局和局部离群点都有着较高的检测精度和检测性能,并且AUC方面受k值影响较小。同时,利用该方法对NBA球员数据进行分析讨论,进一步证明了该方法的实用性和有效性。 展开更多
关键词 离群点检测 聚类 密度峰值 K近邻 核密度估计
下载PDF
DCVAE与DPC融合的网络入侵检测模型研究 被引量:1
6
作者 李登辉 葛丽娜 +2 位作者 王哲 樊景威 张壕 《小型微型计算机系统》 CSCD 北大核心 2024年第4期998-1006,共9页
入侵检测是主动防御网络中攻击行为的技术,以往入侵检测模型因正常网络流量与未知攻击内在特征区分度不足,导致对未知攻击识别率不够高,本文设计基于判别条件变分自编码器与密度峰值聚类算法的入侵检测模型(DCVAE-DPC).利用判别条件变... 入侵检测是主动防御网络中攻击行为的技术,以往入侵检测模型因正常网络流量与未知攻击内在特征区分度不足,导致对未知攻击识别率不够高,本文设计基于判别条件变分自编码器与密度峰值聚类算法的入侵检测模型(DCVAE-DPC).利用判别条件变分自编码器能够生成指定类别样本的能力,学习正常网络流量特征的隐空间表示并计算其重建误差,增加其与未知攻击间的特征区分度,并使用密度峰值聚类算法求出正常网络流量重建误差的分布,提高未知攻击识别率.实验结果表明,在NSL-KDD数据集中与当前流行的入侵检测模型相比,模型的分类准确率可以达到97.08%,具有更高的未知攻击检测能力,面对当前复杂网络环境,有更强的入侵检测性能. 展开更多
关键词 入侵检测 判别条件变分自编码器 密度峰值聚类算法 未知攻击识别 细粒度攻击分类
下载PDF
基于AKNN异常检验与ADPC聚类的低压台区拓扑识别方法 被引量:2
7
作者 史子轶 夏向阳 +3 位作者 刘佳斌 谷阳洋 王玉龙 洪佳瑶 《中国电力》 CSCD 北大核心 2024年第5期168-177,共10页
低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density pea... 低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density peaks clustering,ADPC)聚类的低压台区拓扑识别方法。该方法利用动态时间弯曲(dynamic time warping,DTW)距离度量低压台区用户间电压序列的相似性,通过AKNN异常检验算法检验并校正异常的用户与变压器之间的关系(简称“户变关系”),在得到正确户变关系的基础上,采用ADPC聚类算法对台区内用户进行相位识别;最后,通过实际台区算例分析验证了该方法不需要人为设置参数,能有效实现低压台区的拓扑识别,具有较高的适用性与准确性。 展开更多
关键词 低压台区 户变关系 相位识别 自适应k近邻 自适应密度峰值
下载PDF
基于MDk-DPC的空中目标自动分群方法
8
作者 马钰棠 孙鹏 +2 位作者 张杰勇 闫云飞 赵亮 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第10期3219-3229,共11页
空中目标分群本质上是一个类数未知的聚类问题,也是战场态势估计领域中的研究热点。针对未知的空战场环境,从聚类角度提出一种基于流形距离和k近邻采样密度的MDk-DPC算法。引入流形距离代替欧氏距离,以增加同一流形中目标的相似性;利用... 空中目标分群本质上是一个类数未知的聚类问题,也是战场态势估计领域中的研究热点。针对未知的空战场环境,从聚类角度提出一种基于流形距离和k近邻采样密度的MDk-DPC算法。引入流形距离代替欧氏距离,以增加同一流形中目标的相似性;利用k近邻计算目标的局部密度,使其能更真实地反映目标周围分布;通过自适应选取聚类中心方法确定聚类中心,并运用密度峰值算法指定剩余点类别完成分群。仿真实验表明,所提方法在人工合成数据集和UCI真实数据集上均有更好的聚类性能,同时通过对空战场仿真数据进行分群验证了所提方法的可行性和有效性。 展开更多
关键词 态势估计 目标分群 流形距离 K近邻 密度峰值聚类
下载PDF
基于TimeSVD++与DPC的推荐算法研究
9
作者 陈功进 孙士保 +1 位作者 卜卫锋 杨焕静 《计算机仿真》 2024年第8期286-291,共6页
针对使用奇异值分解(SVD)方法时需要填充矩阵的内容较多以及K-means算法受到K值的影响且数据集形状限制等问题,提出一种将TimeSVD++与改进的密度峰值聚类结合的方法。首先在SVD++的基础上引入参数时间因子,构建TimeSVD++模型;其次,采用... 针对使用奇异值分解(SVD)方法时需要填充矩阵的内容较多以及K-means算法受到K值的影响且数据集形状限制等问题,提出一种将TimeSVD++与改进的密度峰值聚类结合的方法。首先在SVD++的基础上引入参数时间因子,构建TimeSVD++模型;其次,采用将相似系数引入高斯核函数的方法,对密度峰聚类算法中的局部密度公式进行修正;引入信息熵确定最优截断距离,最后在数据集MovieLens-1M和MovieLens-100k上验证,并将实验结果与其它算法进行对比。结果表明:所提出的方法在MAE,RMSE,Recall和F1值指标上均优于其它的算法。 展开更多
关键词 时间因子 密度峰值聚类 局部密度 截断距离
下载PDF
基于AVMD与DPC-FCM的旋转机械无监督故障诊断方法
10
作者 武雅曼 谌鹏 +2 位作者 张滇 刘天 唐剑 《装备环境工程》 CAS 2024年第1期114-120,共7页
目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clu... 目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。 展开更多
关键词 变分模态分解算法 模糊C均值 密度峰值聚类 旋转机械 故障诊断
下载PDF
基于改进DPC-IGWO-Elman的负荷分解方法
11
作者 胡胜 袁功进 刘聪 《湖北工业大学学报》 2024年第5期1-7,共7页
针对现有负荷分解方法负荷特征单一、分解精度低的问题,提出一种结合改进密度峰值聚类算法与改进灰狼算法优化Elman神经网络的非侵入式负荷分解方法。首先针对密度峰值聚类算法(DPC)在处理复杂数据集时缺乏自适应能力的问题对局部密度... 针对现有负荷分解方法负荷特征单一、分解精度低的问题,提出一种结合改进密度峰值聚类算法与改进灰狼算法优化Elman神经网络的非侵入式负荷分解方法。首先针对密度峰值聚类算法(DPC)在处理复杂数据集时缺乏自适应能力的问题对局部密度的计算方法进行改进,再将改进DPC算法应用于用电器负荷数据的聚类分析,从而得到用电器的工作状态标签并进行编码;之后运用Elman神经网络构建分解模型同时引入改进灰狼优化算法(IGWO)对网络参数进行寻优,最后根据网络输出编码获取用电器工作状态标签并根据对应负荷特征信息进行有功功率拟合,完成负荷分解。经公开数据集测试和实验对比,IGWO-Elman模型的识别准确率以及有功功率拟合效果均优于其他模型。 展开更多
关键词 非侵入式负荷分解 密度峰值聚类算法 灰狼优化算法 ELMAN神经网络
下载PDF
Modeling of Energy Consumption and Effluent Quality Using Density Peaks-based Adaptive Fuzzy Neural Network 被引量:10
12
作者 Junfei Qiao Hongbiao Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期968-976,共9页
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a... Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods. 展开更多
关键词 density peaks clustering effluent quality (EQ) energy consumption (EC) fuzzy neural network improved Levenberg-Marquardt algorithm wastewater treatment process (WWTP).
下载PDF
面向无序抓取的DPC聚类多目标检测方法研究
13
作者 陈泽瑜 李向国 +1 位作者 曹登锋 朱灯林 《计算机工程与应用》 CSCD 北大核心 2023年第23期175-182,共8页
为了尽可能多地从场景中检测出可抓取目标,提出了一种基于DPC特征点聚类的多目标检测算法。使用SIFT算法提取模板图像和待检测图像的特征点,并使用DPC算法对待检测图像特征点聚类,得到属于不同聚类中心的特征点集合。将属于不同聚类中... 为了尽可能多地从场景中检测出可抓取目标,提出了一种基于DPC特征点聚类的多目标检测算法。使用SIFT算法提取模板图像和待检测图像的特征点,并使用DPC算法对待检测图像特征点聚类,得到属于不同聚类中心的特征点集合。将属于不同聚类中心的特征点分别与模板图像特征点进行匹配,结合RANSAC算法去除误匹配并统计正确匹配点数量,根据正确匹配的特征点计算从模板图像到待检测图像的单应矩阵从而得到目标检测结果。根据每个目标正确匹配点数量筛选正确的检测结果,并在正确的检测结果中根据目标匹配点数量和目标最多匹配点数量的差值筛选出可抓取目标。检测出可抓取目标之后,使用立体匹配算法得到场景视差图,计算目标的三维坐标,并根据三维坐标与图像中二维坐标的对应关系使用PNP算法计算目标位姿。实验结果表明,基于DPC聚类的多目标检测方法能够在多个相同堆叠目标中准确检测出目标物体并分别计算位姿,有效解决了无序抓取应用中的多目标检测问题。 展开更多
关键词 无序抓取 模板匹配 密度峰值聚类(dpc) 堆叠目标
下载PDF
基于WSDPC-RVR的多模态间歇过程软测量方法
14
作者 王喆 王建林 +2 位作者 李季 周新杰 随恩光 《化工学报》 EI CSCD 北大核心 2023年第11期4656-4669,共14页
间歇过程的多模态特性使得未考虑模态因素建立的软测量模型预测精度较低,现有的间歇过程模态划分方法对初始参数敏感且未考虑异常数据对模态划分结果的影响,其不合理的划分结果是制约多模态间歇过程软测量模型预测精度提升的一个重要因... 间歇过程的多模态特性使得未考虑模态因素建立的软测量模型预测精度较低,现有的间歇过程模态划分方法对初始参数敏感且未考虑异常数据对模态划分结果的影响,其不合理的划分结果是制约多模态间歇过程软测量模型预测精度提升的一个重要因素。提出了一种基于密度加权和相似标签分配密度峰值聚类相关向量回归(weighted destiny and similar label allocation density peaks clustering-relevance vector regression, WSDPC-RVR)的多模态间歇过程软测量方法。首先,以不同数据点的密度贡献程度对低密度区域数据点的局部密度进行加权,准确选取聚类中心,并引入ε近邻结合数据点间的距离与局部密度构建剩余数据点的分配策略;然后,定义模态评价指标并分析不同模态的统计特性,构建异常模态判别策略获取有效模态数量,完成间歇过程模态划分;最后,建立各有效模态的RVR软测量模型,实现间歇过程主导变量的在线预测。青霉素发酵过程的仿真实验结果表明,所提方法能够实现合理的模态划分,有效地提高了软测量模型的预测精度。 展开更多
关键词 间歇式 密度峰值聚类 模态划分 模型 发酵
下载PDF
基于网格近邻优化的密度峰值聚类算法 被引量:1
15
作者 刘继 杨金瑞 《计算机应用研究》 CSCD 北大核心 2024年第4期1058-1063,共6页
密度峰值聚类(DPC)将数据样本点的局部密度和相对距离进行结合,能对任意形状数据集进行聚类处理,但密度峰值聚类算法存在主观选择截断距离、简单分配策略和较高时间复杂度等问题。为此,提出了一种基于网格近邻优化的密度峰值聚类算法(KG... 密度峰值聚类(DPC)将数据样本点的局部密度和相对距离进行结合,能对任意形状数据集进行聚类处理,但密度峰值聚类算法存在主观选择截断距离、简单分配策略和较高时间复杂度等问题。为此,提出了一种基于网格近邻优化的密度峰值聚类算法(KG-DPC算法)。首先对数据空间进行网格化,减少了样本数据点之间距离的计算量;在计算局部密度时不仅考虑了网格自身的密度值,而且考虑了周围k个近邻的网格密度值,降低了主观选择截断距离对聚类结果的影响,提高了聚类准确率,设定网格密度阈值,保证了聚类结果的稳定性。通过实验结果表明,KG-DPC算法比DBSCAN、DPC和SDPC算法在聚类准确率上有很大提升,在聚类平均消耗时间上DPC、SNN-DPC和DPC-NN算法分别降低38%、44%和44%。在保证基本聚类准确率的基础上,KG-DPC算法在聚类效率上有特定优势。 展开更多
关键词 密度峰值聚类 密度阈值 网格 近邻优化
下载PDF
面向流形数据的加权自然近邻密度峰值聚类算法
16
作者 赵嘉 马清 +3 位作者 陈蔚昌 肖人彬 崔志华 潘正祥 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期652-660,669,共10页
流形数据由一些弧线形类簇组成,其特点是同一类簇的样本间距离较大.密度峰值聚类(DPC)算法具有简单高效的特点,但应对流形数据时表现不佳. DPC算法的两种密度度量标准可能造成不同程度的信息缺失,其分配策略仅参考距离和密度,致使聚类... 流形数据由一些弧线形类簇组成,其特点是同一类簇的样本间距离较大.密度峰值聚类(DPC)算法具有简单高效的特点,但应对流形数据时表现不佳. DPC算法的两种密度度量标准可能造成不同程度的信息缺失,其分配策略仅参考距离和密度,致使聚类精度不高.提出面向流形数据的加权自然近邻DPC(DPC-WNNN)算法,定义样本局部密度时,综合分析样本的局部和全局信息,引入加权的自然近邻以及逆近邻来应对高斯核或截断核的信息缺失问题.设计样本分配策略时通过引入共享近邻和共享逆近邻计算样本相似度,弥补DPC算法空间因素缺失的问题.将DPC-WNNN算法在流形数据集和真实数据集上与7种类似算法进行比较,结果表明该算法能更有效地找到类簇的中心点并准确分配样本,表现出良好的聚类性能. 展开更多
关键词 密度峰值 聚类 流形数据 自然近邻
下载PDF
基于聚类和深度学习的车联网轨迹隐私保护机制
17
作者 申自浩 唐雨雨 +2 位作者 王辉 刘沛骞 刘琨 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第1期20-28,共9页
针对车联网轨迹发布中用户面临的隐私泄露问题,提出基于聚类和深度学习的轨迹隐私保护机制(PPCDL).考虑轨迹中的时间因素,通过时间戳将轨迹空间划分为多个区域,获取区域中的轨迹分布点.对每个区域进行改进稳定隶属度多峰值聚类,根据区... 针对车联网轨迹发布中用户面临的隐私泄露问题,提出基于聚类和深度学习的轨迹隐私保护机制(PPCDL).考虑轨迹中的时间因素,通过时间戳将轨迹空间划分为多个区域,获取区域中的轨迹分布点.对每个区域进行改进稳定隶属度多峰值聚类,根据区域轨迹密度进行隐私预算矩阵的预分配.利用时间图卷积网络模型提取轨迹数据的时空特征,对隐私预算预分配矩阵进行训练和预测.根据预测结果添加相应的拉普拉斯噪声,在轨迹数据发布前进行扰动.理论分析和实验结果表明,PPCDL相较于对比机制,时间开销更少,能够更精确地预测隐私预算.利用PPCDL可以合理地在轨迹数据中添加拉普拉斯噪声,有效地提高了轨迹数据的可用性. 展开更多
关键词 隐私保护 密度峰值聚类 轨迹隐私 时间图卷积网络 隐私预算
下载PDF
面向密度分布不均数据的加权逆近邻密度峰值聚类算法
18
作者 吕莉 陈威 +2 位作者 肖人彬 韩龙哲 谭德坤 《智能系统学报》 CSCD 北大核心 2024年第1期165-175,共11页
针对密度分布不均数据,密度峰值聚类算法易忽略类簇间样本的疏密差异,导致误选类簇中心;分配策略易将稀疏区域的样本误分到密集区域,导致聚类效果不佳的问题,本文提出一种面向密度分布不均数据的加权逆近邻密度峰值聚类算法。该算法首... 针对密度分布不均数据,密度峰值聚类算法易忽略类簇间样本的疏密差异,导致误选类簇中心;分配策略易将稀疏区域的样本误分到密集区域,导致聚类效果不佳的问题,本文提出一种面向密度分布不均数据的加权逆近邻密度峰值聚类算法。该算法首先在局部密度公式中引入基于sigmoid函数的权重系数,增加稀疏区域样本的权重,结合逆近邻思想,重新定义了样本的局部密度,有效提升类簇中心的识别率;其次,引入改进的样本相似度策略,利用样本间的逆近邻及共享逆近邻信息,使得同一类簇样本间具有较高的相似度,可有效改善稀疏区域样本分配错误的问题。在密度分布不均、复杂形态和UCI数据集上的对比实验表明,本文算法的聚类效果优于IDPC-FA、FNDPC、FKNN-DPC、DPC和DPCSA算法。 展开更多
关键词 密度峰值聚类 密度分布不均 逆近邻 共享逆近邻 样本相似度 局部密度 分配策略 数据挖掘
下载PDF
结合聚类边界采样的主动学习
19
作者 胡峰 李路正 +1 位作者 代劲 刘群 《智能系统学报》 CSCD 北大核心 2024年第2期482-492,共11页
主动学习是一种机器学习方法,需要选择最有价值的样本进行标注。目前,主动学习在应用时面临着一些挑战,其依赖分类器的先验假设,这容易导致分类器性能意外下降,同时需要一定规模的样本作为启动条件。聚类可以降低问题规模,是主动学习的... 主动学习是一种机器学习方法,需要选择最有价值的样本进行标注。目前,主动学习在应用时面临着一些挑战,其依赖分类器的先验假设,这容易导致分类器性能意外下降,同时需要一定规模的样本作为启动条件。聚类可以降低问题规模,是主动学习的一种有效手段。为此,结合密度聚类边界采样,开展主动学习方法的研究。针对容易产生分类错误的聚类边界区域,通过计算样本密度,提出一种密度峰值聚类边界点采样方法;在此基础上,给出密度熵的定义,并利用密度熵对聚类边界区域进行启发式搜索,提出一种基于聚类边界采样的主动学习方法。试验结果表明,与文献中的5种主动学习算法相比,该算法能够以更少标记量获得同等甚至更高的分类性能,是一种有效的主动学习算法;在标记不足,无标签样本总量20%的情况下,算法在Accuracy、F-score等指标上取得较好的结果。 展开更多
关键词 主动学习 机器学习 聚类边界 密度峰值聚类 几何采样 信息熵 版本空间 主动聚类
下载PDF
高光谱影像逆近邻密度峰值聚类的波段选择算法
20
作者 孙根云 李忍忍 +3 位作者 张爱竹 安娜 付航 潘兆杰 《测绘学报》 EI CSCD 北大核心 2024年第1期8-19,共12页
密度峰值聚类波段选择算法利用局部密度描述波段的密度信息,然而现有的局部密度容易忽略波段分布的全局信息,不能有效描述波段的分布特征,导致波段子集分类精度有限。为解决上述问题,本文提出一种基于逆近邻的密度峰值聚类波段选择算法... 密度峰值聚类波段选择算法利用局部密度描述波段的密度信息,然而现有的局部密度容易忽略波段分布的全局信息,不能有效描述波段的分布特征,导致波段子集分类精度有限。为解决上述问题,本文提出一种基于逆近邻的密度峰值聚类波段选择算法。首先,利用波段与其K近邻构建K近邻有向图,获取波段的逆近邻,以及波段之间的共享近邻和共享逆近邻;然后,利用共享近邻和共享逆近邻并集的个数作为波段之间的相似度,利用波段与其逆近邻的平均欧氏距离和相似度构造增强型局部密度;最后,将增强型局部密度、距离因子、信息熵三者的乘积作为权重值,根据权重值挑选波段子集。为提高试验效率和实用性,本文算法还提出一种自动获得K值的自适应K值方法。在3个高光谱标准数据集上的试验结果表明,本文算法得到的波段子集比其他先进算法挑选的波段有更好的分类性能,尤其是在波段数较少的情况下,而且计算效率较高。 展开更多
关键词 高光谱影像 波段选择 密度峰值聚类 逆近邻 局部密度 自适应K值
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部