Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that...Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density.展开更多
Covering a wide range of bulk densities, density profiles for hard-sphere chain fluids (HSCFs) with chain length of 3,4,8,20,32 and 64 confined between two surfaces were obtained by Monte Carlo simulations using exten...Covering a wide range of bulk densities, density profiles for hard-sphere chain fluids (HSCFs) with chain length of 3,4,8,20,32 and 64 confined between two surfaces were obtained by Monte Carlo simulations using extended continuum configurational-bias (ECCB) method. It is shown that the enrichment of beads near surfaces is happened at high densities due to the bulk packing effect, on the contrary, the depletion is revealed at low densities owing to the configurational entropic contribution. Comparisons with those calculated by density functional theory presented by Cai et al. indicate that the agreement between simulations and predictions is good. Compressibility factors of bulk HSCFs calculated using volume fractions at surfaces were also used to test the reliability of various equations of state of HSCFs by different authors.展开更多
A plasma density profile reconstruction procedure based on the Park matrix method has been developed for both circular and elongated plasma configuration on the Experimental Advanced Superconducting Tokamak(EAST).Th...A plasma density profile reconstruction procedure based on the Park matrix method has been developed for both circular and elongated plasma configuration on the Experimental Advanced Superconducting Tokamak(EAST).This method incorporates the line integrated electron density measured by the HCN interferometer and polarimeter/interferometer(POINT) system,the equilibrium fit(EFIT) based on magnetic measurements and the edge electron density profile provided by the microwave reflectometer.It is shown that when the magnetic flux surfaces are slightly corrected,the fitting error is less than 5% in comparison with the measurement data.展开更多
The methods of deriving FeO and TiO_(2)contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper(M3)instrume...The methods of deriving FeO and TiO_(2)contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper(M3)instrument on Chandrayaan-1.The density of lunar bedrock was then modeled on the basis of the derived FeO and TiO_(2)abundances.The FeO and TiO_(2)abundances derived from the M^(3)data were compared with the previous results of the Clementine data and were in good agreement.The FeO abundance data also agreed well with the Lunar Prospector data,which were used as an independent source.The previous Clementine and newly M3 derived abundances were compared with the laboratory measured FeO and TiO2 contents in the Apollo and Luna returned samples.The Clementine derived FeO content was systematically 1%–2%lower than the laboratory measurements in all the returned samples.The M^(3)derived content agreed well with the returned Apollo samples and was within±2.8%of the laboratory measurements.The Clementine derived TiO2 abundance was systematically 0.1%–4%higher than the laboratory measurements of the returned samples.The M3 derived TiO_(2)agreed well(±0.6%)with the laboratory measurements of the returned samples,except for samples with high TiO2 content.However,these results should be carefully interpreted because the error range requires verification.No error analysis was provided with the previous Clementine derived contents.展开更多
The standard density profile reconstruction techniques are based on the WKB approximation of the probing wave’s phase,making them unable to properly reconstruct blind areas in the cut-off frequency profile.The recons...The standard density profile reconstruction techniques are based on the WKB approximation of the probing wave’s phase,making them unable to properly reconstruct blind areas in the cut-off frequency profile.The reconstruction suffers a significant immediate error that is not rapidly damped.It is demonstrated that even though no reflections occur inside the hollow region causing the blind area,the higher probing frequencies that propagate through it carry information that can be used to estimate its properties.The usually ignored full-wave effects were investigated with the use of full-wave simulations in 1 D,with special attention paid to the frequency band where they are dominant.A database of perturbation signals was simulated onfive-dimensions of parameters and an application of the database inversion was demonstrated for a magnetic island in a Tore Supra discharge.The new adapted reconstruction scheme improved the description of the density profile inside the hollow region and also along 10 cm after it.展开更多
The resonant magnetic perturbation (RMP) coils have been successfully designed and installed on the Experimental Advanced Superconducting Tokamak (EAST). Using the reflectometer systems, the density profile and th...The resonant magnetic perturbation (RMP) coils have been successfully designed and installed on the Experimental Advanced Superconducting Tokamak (EAST). Using the reflectometer systems, the density profile and the density fluctuations during magnetic perturbations (MPs) phase have been investigated. During the experiments, two different cases are studied separately: steady MPs and rotating MPs. In both cases, a strongly density pump-out has been observed. In the steady MPs cases, an enhancement of the low frequency (〈60 kHz) density fluctuations in H-mode phase has been observed. The plasma density boundary out-shifts 5~ caused by the MPs. The pedestal density gradient is reduced by 50%, while the radial location nearly stays unchanged. In the rotating MPs, the line-averaged density, the D~ emission at the divertor region and the spectrum of the density fluctuations are modulated. The results suggest that the low frequency (〈60 kHz) density fluctuations may contribute to the strong density pump-out.展开更多
We use the pruned-enriched Rosenbluth method to investigate systematically the segment density profiles of compact polymer chains confined between two parallel plane walls. The non-adsorption case of adsorption intera...We use the pruned-enriched Rosenbluth method to investigate systematically the segment density profiles of compact polymer chains confined between two parallel plane walls. The non-adsorption case of adsorption interaction energy ε = 0 and the weak adsorption case of ε= -1 are considered for the compact polymer chains with different chain lengths N and different separation distances between two walls D. Several special entropy effects on the confined compact polymer chains, such as a damped oscillation in the segment density profile for the large separation distance D, are observed and discussed for different separation distances D in the non-adsorption case. In the weak adsorption case, investigations on the segment density profiles indicate that the competition between the entropy and adsorption effects results in an obvious depletion layer. Moreover, the scaling laws of the damped oscillation period Td and the depletion layer width Ld are obtained for the confined compact chains. Most of these results are obtained for the first time so far as we know, which are expected to understand the properties of the confined compact polymer chains more completely.展开更多
A modulated microwave reflectometry has been successfully developed on HL-2A, which can be used to measure the plasma density profile with time-delay method. This microwave reflectometry has two frequency ranges (26....A modulated microwave reflectometry has been successfully developed on HL-2A, which can be used to measure the plasma density profile with time-delay method. This microwave reflectometry has two frequency ranges (26.5 to 40 GHz and 40 to 60 GHz) and it is suitable for measuring the plasma density ranging from 0.8×10^13 cm^-3 to 4.5×10^13 cm^-3. The temporal resolution is i ms and the spatial resolution is about 1 cm. This paper will present the basic principle of the microwave reflectometry, parameters calibration of the equipment and the experimental results on HL-2A tokamak.展开更多
A one-channel microwave reflectometer is used to measure the electron densityprofile in a low-density plasma experiment (n_e < 0.27 x 10^(19) m^(-3)) sustained by 2.45 GHzlower hybrid current drive (LHCD) on TRIAM-...A one-channel microwave reflectometer is used to measure the electron densityprofile in a low-density plasma experiment (n_e < 0.27 x 10^(19) m^(-3)) sustained by 2.45 GHzlower hybrid current drive (LHCD) on TRIAM-1M. In order to remove the effect of phase runawayphenomena, a step-like frequency-sweeping way is used and a special phase analysis technique isintroduced. The density profile is reconstructed in TRIAM-1M with the swept frequency ranged from 6GHz to 15 GHz. The corresponding cutoff density is from (0.045 ~ 0.28) x 10^(19) m^(-3) in theordinary polarization mode. The results are in good agreement with the measurements from amulti-channel 2 mm-wavelength interferometer.展开更多
Linear and nonlinear evolutions of the resistive wall mode(RWM) were numerically carried out with different plasma density profiles.Both stabilizing and destabilizing effects were observed.The plasma density shear had...Linear and nonlinear evolutions of the resistive wall mode(RWM) were numerically carried out with different plasma density profiles.Both stabilizing and destabilizing effects were observed.The plasma density shear had a stabilizing effect on the RWM,and the stabilizing effect was better as the plasma density shear rate increased.In the uniform density plasma,the effects of flowshear on the RWMstability were stronger than those for non-uniform density plasma.For lower flowshear,the effects of the plasma density shear rate on the RWMwere more obvious.In the nonlinear phase,the repulsive force associated with the piling up magnetic flux near the resistive wall prevented further growth of perturbed magnetic energy,and the RWMwas saturated.The saturation levels were almost independent of the density profiles.展开更多
The discharged capillary plasma channel has been extensively studied as a high-gradient particle acceleration and transmission medium.A novel measurement method of plasma channel density profiles has been employed,whe...The discharged capillary plasma channel has been extensively studied as a high-gradient particle acceleration and transmission medium.A novel measurement method of plasma channel density profiles has been employed,where the role of plasma channels guiding the advantages of lasers has shown strong appeal.Here,we have studied the high-order transverse plasma density profile distribution using a channel-guided laser,and made detailed measurements of its evolution under various parameters.The paraxial wave equation in a plasma channel with high-order density profile components is analyzed,and the approximate propagation process based on the Gaussian profile laser is obtained on this basis,which agrees well with the simulation under phase conditions.In the experiments,by measuring the integrated transverse laser intensities at the outlet of the channels,the radial quartic density profiles of the plasma channels have been obtained.By precisely synchronizing the detection laser pulses and the plasma channels at various moments,the reconstructed density profile shows an evolution from the radial quartic profile to the quasi-parabolic profile,and the high-order component is indicated as an exponential decline tendency over time.Factors affecting the evolution rate were investigated by varying the incentive source and capillary parameters.It can be found that the discharge voltages and currents are positive factors quickening the evolution,while the electron-ion heating,capillary radii and pressures are negative ones.One plausible explanation is that quartic profile contributions may be linked to plasma heating.This work helps one to understand the mechanisms of the formation,the evolutions of the guiding channel electron-density profiles and their dependences on the external controllable parameters.It provides support and reflection for physical research on discharged capillary plasma and optimizing plasma channels in various applications.展开更多
It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN...It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schroedinger- Poisson equations, theoretical investigation is carried out about the effects of donor density (0-1×10^19 cm^-3) and temperature (50-500 K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective △Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective △Ec. The Capacitance-Voltage (C - V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.展开更多
The density functional theory, simplified by the local density approximation and mean-field approxi-mation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is ado...The density functional theory, simplified by the local density approximation and mean-field approxi-mation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is adopted to avoid the truncation of the potential. The perturbation theory is applied to establish the equation for the phase equilibrium, in which the hard-core chain fluid is as the reference fluid and the Yukawa potential is used as the perturbation term. Three parameters, ε/κ, d and ms, are regressed frorn the vapor-liquid equilibria, and the surface properties, including density profile, surface tension and local surface tension profile are predicted with these parameters.展开更多
The extraordinary mode(X-mode)lower cut-off frequency is proposed for use in the reflectometry diagnostic on ITER for the electron density profile measurement,which is a trade-off between extreme plasma parameters and...The extraordinary mode(X-mode)lower cut-off frequency is proposed for use in the reflectometry diagnostic on ITER for the electron density profile measurement,which is a trade-off between extreme plasma parameters and the accessible probing frequency.In contemporary experiments,the lower cutoff frequency can be identified at the probing frequency below the electron cyclotron frequency(f_(ce)) under certain plasma conditions.We provide here,for the first time,the experimental validation of the use of the lower cut-off frequency for the density profiles via the reflectometry measurement on EAST.The corresponding group delay of the lower cut-off frequency evolves continuously with the upper one,revealing a reasonable radial coverage extension of reflectometry measurement toward the plasma core.It is concluded that the lower cut-off frequency can be used as a supplement to the upper one in the density profile inversion process,which is of particular interest in the high magnetic field and/or density discharge to extend the radial coverage of reflectometry measurement.展开更多
Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality thr...Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance.Current quality control(QC)and quality assurance(QA)plans provide limited coverage.Consequently,the risk of missing areas with poor joint compaction is significant.A density profiling system(DPS)is a non-destructive alternative to conventional destructive evaluation methods.It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics.The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality.The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint.The paper proposes a dielectric-based longitudinal joint quality index(LJQI)to evaluate the relative compaction of the joint during construction.It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints,identify locations of poor quality during construction,and achieve better-performing flexible pavements.展开更多
Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by...Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by surface erosion that may occur after the construction of the solar PVpower station. In order to avoid damage to a solar PV power station in sandy areas, it is necessary toinvestigate the characteristics of wind-sand movement under the interference of solar PV array. The studywas undertaken by measuring sediment transport of different wind directions above shifting dunes andthree observation sites around the PV panels in the Hobq Desert, China. The results showed that the twoparameterexponential function provides better fit for the measured flux density profiles to the near-surfaceof solar PV array. However, the saltation height of sand particles changes with the intersection anglebetween the solar PV array and wind direction exceed 45°. The sediment transport rate above shifting duneswas always the greatest, while that around the test PV panels varied accordingly to the wind direction.Moreover, the aeolian sediment transport on the solar PV array was significantly affected by wind direction.The value of sand inhibition rate ranged from 35.46% to 88.51% at different wind directions. When theintersection angle exceeds 45°, the mean value of sediment transport rate above the solar PV array reducesto 82.58% compared with the shifting dunes. The results of our study expand our understanding of theformation and evolution of aeolian geomorphology at the solar PV footprint. This will facilitate the designand control engineering plans for solar PV array in sandy areas that operate according to the wind regime.展开更多
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 MHz. The simulations were carried out by means of a code,HELIC. They were carried ...This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 MHz. The simulations were carried out by means of a code,HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from 10^(11) cm^(-3) to 10^(13) cm^(-3). The magnetic field was 200, 400, 600 and 1000 G. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece–Gould(TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile.Power deposition was considerably asymmetric when the n/B_0 ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately n_0 =10^(11) cm^(-3), irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was 10^(12) cm^(-3). The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.展开更多
Ion Bernstein waves (IBWs) have been proposed to be useful for heating and improving transport in tokamak plasmas. An Ion Bernstein wave heating experiment using different frequency (27 MHz and 30 MHz) was carried...Ion Bernstein waves (IBWs) have been proposed to be useful for heating and improving transport in tokamak plasmas. An Ion Bernstein wave heating experiment using different frequency (27 MHz and 30 MHz) was carried out on HT-7 superconducting tokamak in recent experiments. At a frequency of 30 MHz, ne peaked and Ha dropped have been pervasively observed, Tp was improved by a factor of 2 - 4, and Te increased by a factor of 1 - 1.5. An obvious confinement of particle was observed during the IBW pulse. At 27MHz, both global and localized electron heating were observed depending on the location of the ion resonant layer by changing Bt. Central electron heating effect was obtained in the global heating mode and electron temperature strongly increased near the 2 ΩD resonant layer for localized heating mode.展开更多
A bridge function approximation is proposed for a single-component fluid consisting of penetrable sphere interacting via a potential that remains finite and constant for center-center distance smaller than the particl...A bridge function approximation is proposed for a single-component fluid consisting of penetrable sphere interacting via a potential that remains finite and constant for center-center distance smaller than the particle diameter and is zero otherwise. The radial distribution function from the Ornstein-Zernike integral equation combined with the present bridge function approximation is in satisfactory agreement with the corresponding simulation data for all of the investigated state points. The presently calculated excess Helmholtz free energy respectively based on virial route and compressibility route is highly self-consistent, and is in very good agreement with simulational results for the case of low temperatures. The present bridge function approximation, combined with the bridge density functional approximation, can reproduce very accurately density profiles of the penetrable sphere fluid confined in a hard spherical cavity for all the cases where simulational results are available.展开更多
The J-TEXT three-wave polarimeter-interferometer system(POLARIS),which measures timespace distribution of electron density and current density,has been optimized with both the optical system and the equilibrium recons...The J-TEXT three-wave polarimeter-interferometer system(POLARIS),which measures timespace distribution of electron density and current density,has been optimized with both the optical system and the equilibrium reconstruction method.The phase resolution of a Faraday rotation angle has been improved from 0.1 to 0.06 degree in chords from–0.18 to 0.18 m(plasma minor radius),and the sawtooth oscillation behavior has been detected by Faraday rotation angle measurement.By combining the POLARIS measured data and the equilibrium and fitting code(EFIT),an upgraded equilibrium reconstruction method has been developed,which provides a more accurate temporal and spatial distribution of current density and electron density.By means of the optimized POLARIS and improved equilibrium reconstruction,variations of profiles with increasing density have been carried out,under both Ohmic and electron cyclotron resonance heating discharges.展开更多
基金supported by National Natural Science Foundation of China (Nos. 12205033, 12105317, 11905022 and 11975062)Dalian Youth Science and Technology Project (No. 2022RQ039)+1 种基金the Fundamental Research Funds for the Central Universities (No. 3132023192)the Young Scientists Fund of the Natural Science Foundation of Sichuan Province (No. 2023NSFSC1291)
文摘Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density.
基金Supported by the National Science Foundation of China (No. 29736170, No. 20025618) and the Doctoral Research Foundation by Ministry of Education of China (No. 1999025103). Additional support provided by the Visiting Researcher Foundation of University La
文摘Covering a wide range of bulk densities, density profiles for hard-sphere chain fluids (HSCFs) with chain length of 3,4,8,20,32 and 64 confined between two surfaces were obtained by Monte Carlo simulations using extended continuum configurational-bias (ECCB) method. It is shown that the enrichment of beads near surfaces is happened at high densities due to the bulk packing effect, on the contrary, the depletion is revealed at low densities owing to the configurational entropic contribution. Comparisons with those calculated by density functional theory presented by Cai et al. indicate that the agreement between simulations and predictions is good. Compressibility factors of bulk HSCFs calculated using volume fractions at surfaces were also used to test the reliability of various equations of state of HSCFs by different authors.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB106003,2014GB106004 and 2014GB106002)National Natural Science Foundation of China(Nos.11475221 and 11105184)
文摘A plasma density profile reconstruction procedure based on the Park matrix method has been developed for both circular and elongated plasma configuration on the Experimental Advanced Superconducting Tokamak(EAST).This method incorporates the line integrated electron density measured by the HCN interferometer and polarimeter/interferometer(POINT) system,the equilibrium fit(EFIT) based on magnetic measurements and the edge electron density profile provided by the microwave reflectometer.It is shown that when the magnetic flux surfaces are slightly corrected,the fitting error is less than 5% in comparison with the measurement data.
文摘The methods of deriving FeO and TiO_(2)contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper(M3)instrument on Chandrayaan-1.The density of lunar bedrock was then modeled on the basis of the derived FeO and TiO_(2)abundances.The FeO and TiO_(2)abundances derived from the M^(3)data were compared with the previous results of the Clementine data and were in good agreement.The FeO abundance data also agreed well with the Lunar Prospector data,which were used as an independent source.The previous Clementine and newly M3 derived abundances were compared with the laboratory measured FeO and TiO2 contents in the Apollo and Luna returned samples.The Clementine derived FeO content was systematically 1%–2%lower than the laboratory measurements in all the returned samples.The M^(3)derived content agreed well with the returned Apollo samples and was within±2.8%of the laboratory measurements.The Clementine derived TiO2 abundance was systematically 0.1%–4%higher than the laboratory measurements of the returned samples.The M3 derived TiO_(2)agreed well(±0.6%)with the laboratory measurements of the returned samples,except for samples with high TiO2 content.However,these results should be carefully interpreted because the error range requires verification.No error analysis was provided with the previous Clementine derived contents.
基金carried out with the support of the Brazilian National Council for Scientific and Technological Development(CNPq)under the Science Without Borders programme,within the framework of the French Federation for Magnetic Fusion Studies(FR-FCM)and of the EUROfusion consortium with funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No.633053part-funded by the RCUK Energy Programme grant number EP/P012450/1。
文摘The standard density profile reconstruction techniques are based on the WKB approximation of the probing wave’s phase,making them unable to properly reconstruct blind areas in the cut-off frequency profile.The reconstruction suffers a significant immediate error that is not rapidly damped.It is demonstrated that even though no reflections occur inside the hollow region causing the blind area,the higher probing frequencies that propagate through it carry information that can be used to estimate its properties.The usually ignored full-wave effects were investigated with the use of full-wave simulations in 1 D,with special attention paid to the frequency band where they are dominant.A database of perturbation signals was simulated onfive-dimensions of parameters and an application of the database inversion was demonstrated for a magnetic island in a Tore Supra discharge.The new adapted reconstruction scheme improved the description of the density profile inside the hollow region and also along 10 cm after it.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB106000,2014GB106003 and2015GB110001)National Natural Science Foundation of China(Nos.11275234,11305215,11305208,11405214 and 11505221)
文摘The resonant magnetic perturbation (RMP) coils have been successfully designed and installed on the Experimental Advanced Superconducting Tokamak (EAST). Using the reflectometer systems, the density profile and the density fluctuations during magnetic perturbations (MPs) phase have been investigated. During the experiments, two different cases are studied separately: steady MPs and rotating MPs. In both cases, a strongly density pump-out has been observed. In the steady MPs cases, an enhancement of the low frequency (〈60 kHz) density fluctuations in H-mode phase has been observed. The plasma density boundary out-shifts 5~ caused by the MPs. The pedestal density gradient is reduced by 50%, while the radial location nearly stays unchanged. In the rotating MPs, the line-averaged density, the D~ emission at the divertor region and the spectrum of the density fluctuations are modulated. The results suggest that the low frequency (〈60 kHz) density fluctuations may contribute to the strong density pump-out.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20274040,20574052)the Program for New Century Excellent Talents in Universities(No.NCET-05-0538)+1 种基金the Natural Science Foundation of Zhejiang Province(Nos.R404047,Y405011,Y405553)China Postdoctoral Science Foundation(No.20060401064).
文摘We use the pruned-enriched Rosenbluth method to investigate systematically the segment density profiles of compact polymer chains confined between two parallel plane walls. The non-adsorption case of adsorption interaction energy ε = 0 and the weak adsorption case of ε= -1 are considered for the compact polymer chains with different chain lengths N and different separation distances between two walls D. Several special entropy effects on the confined compact polymer chains, such as a damped oscillation in the segment density profile for the large separation distance D, are observed and discussed for different separation distances D in the non-adsorption case. In the weak adsorption case, investigations on the segment density profiles indicate that the competition between the entropy and adsorption effects results in an obvious depletion layer. Moreover, the scaling laws of the damped oscillation period Td and the depletion layer width Ld are obtained for the confined compact chains. Most of these results are obtained for the first time so far as we know, which are expected to understand the properties of the confined compact polymer chains more completely.
基金supported by National Natural Science Foundation of China (No. 10335060)
文摘A modulated microwave reflectometry has been successfully developed on HL-2A, which can be used to measure the plasma density profile with time-delay method. This microwave reflectometry has two frequency ranges (26.5 to 40 GHz and 40 to 60 GHz) and it is suitable for measuring the plasma density ranging from 0.8×10^13 cm^-3 to 4.5×10^13 cm^-3. The temporal resolution is i ms and the spatial resolution is about 1 cm. This paper will present the basic principle of the microwave reflectometry, parameters calibration of the equipment and the experimental results on HL-2A tokamak.
文摘A one-channel microwave reflectometer is used to measure the electron densityprofile in a low-density plasma experiment (n_e < 0.27 x 10^(19) m^(-3)) sustained by 2.45 GHzlower hybrid current drive (LHCD) on TRIAM-1M. In order to remove the effect of phase runawayphenomena, a step-like frequency-sweeping way is used and a special phase analysis technique isintroduced. The density profile is reconstructed in TRIAM-1M with the swept frequency ranged from 6GHz to 15 GHz. The corresponding cutoff density is from (0.045 ~ 0.28) x 10^(19) m^(-3) in theordinary polarization mode. The results are in good agreement with the measurements from amulti-channel 2 mm-wavelength interferometer.
基金National Natural Science Foundation of China(No.11175156)Natural Science Foundation of Shandong Province of China(No.ZR2016AM30)Foundation of Shandong Province Higher Educational Science and Technology Program,China(No.J12LN16)
文摘Linear and nonlinear evolutions of the resistive wall mode(RWM) were numerically carried out with different plasma density profiles.Both stabilizing and destabilizing effects were observed.The plasma density shear had a stabilizing effect on the RWM,and the stabilizing effect was better as the plasma density shear rate increased.In the uniform density plasma,the effects of flowshear on the RWMstability were stronger than those for non-uniform density plasma.For lower flowshear,the effects of the plasma density shear rate on the RWMwere more obvious.In the nonlinear phase,the repulsive force associated with the piling up magnetic flux near the resistive wall prevented further growth of perturbed magnetic energy,and the RWMwas saturated.The saturation levels were almost independent of the density profiles.
基金supported by the National Natural Science Foundation of China(Nos.11975037,61631001 and 11921006)the National Grand Instrument Project(Nos.2019YFF01014400 and 2019YFF01014404).
文摘The discharged capillary plasma channel has been extensively studied as a high-gradient particle acceleration and transmission medium.A novel measurement method of plasma channel density profiles has been employed,where the role of plasma channels guiding the advantages of lasers has shown strong appeal.Here,we have studied the high-order transverse plasma density profile distribution using a channel-guided laser,and made detailed measurements of its evolution under various parameters.The paraxial wave equation in a plasma channel with high-order density profile components is analyzed,and the approximate propagation process based on the Gaussian profile laser is obtained on this basis,which agrees well with the simulation under phase conditions.In the experiments,by measuring the integrated transverse laser intensities at the outlet of the channels,the radial quartic density profiles of the plasma channels have been obtained.By precisely synchronizing the detection laser pulses and the plasma channels at various moments,the reconstructed density profile shows an evolution from the radial quartic profile to the quasi-parabolic profile,and the high-order component is indicated as an exponential decline tendency over time.Factors affecting the evolution rate were investigated by varying the incentive source and capillary parameters.It can be found that the discharge voltages and currents are positive factors quickening the evolution,while the electron-ion heating,capillary radii and pressures are negative ones.One plausible explanation is that quartic profile contributions may be linked to plasma heating.This work helps one to understand the mechanisms of the formation,the evolutions of the guiding channel electron-density profiles and their dependences on the external controllable parameters.It provides support and reflection for physical research on discharged capillary plasma and optimizing plasma channels in various applications.
文摘It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schroedinger- Poisson equations, theoretical investigation is carried out about the effects of donor density (0-1×10^19 cm^-3) and temperature (50-500 K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective △Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective △Ec. The Capacitance-Voltage (C - V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.
基金Supported by the National Natural Science Foundation of China (No. 20102007) and the Fundamental Research Fund of Tsinghua University of China (No. JZ2002003).
文摘The density functional theory, simplified by the local density approximation and mean-field approxi-mation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is adopted to avoid the truncation of the potential. The perturbation theory is applied to establish the equation for the phase equilibrium, in which the hard-core chain fluid is as the reference fluid and the Yukawa potential is used as the perturbation term. Three parameters, ε/κ, d and ms, are regressed frorn the vapor-liquid equilibria, and the surface properties, including density profile, surface tension and local surface tension profile are predicted with these parameters.
基金supported by the National Key R&D Program of China(Nos.2017YFE0301205 and 2019YFE03040002)National Natural Science Foundation of China(Nos.11875289,11975271,11805136,12075284,and 12175277)China Postdoctoral Science Foundation(No.2021M703256)。
文摘The extraordinary mode(X-mode)lower cut-off frequency is proposed for use in the reflectometry diagnostic on ITER for the electron density profile measurement,which is a trade-off between extreme plasma parameters and the accessible probing frequency.In contemporary experiments,the lower cutoff frequency can be identified at the probing frequency below the electron cyclotron frequency(f_(ce)) under certain plasma conditions.We provide here,for the first time,the experimental validation of the use of the lower cut-off frequency for the density profiles via the reflectometry measurement on EAST.The corresponding group delay of the lower cut-off frequency evolves continuously with the upper one,revealing a reasonable radial coverage extension of reflectometry measurement toward the plasma core.It is concluded that the lower cut-off frequency can be used as a supplement to the upper one in the density profile inversion process,which is of particular interest in the high magnetic field and/or density discharge to extend the radial coverage of reflectometry measurement.
文摘Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance.Current quality control(QC)and quality assurance(QA)plans provide limited coverage.Consequently,the risk of missing areas with poor joint compaction is significant.A density profiling system(DPS)is a non-destructive alternative to conventional destructive evaluation methods.It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics.The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality.The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint.The paper proposes a dielectric-based longitudinal joint quality index(LJQI)to evaluate the relative compaction of the joint during construction.It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints,identify locations of poor quality during construction,and achieve better-performing flexible pavements.
基金This research was supported by the Major Science and Technology Projects of Inner Mongolia Autonomous Region of China(zdzx2018058-3)the National Key Research and Development Project of China(2016YFC0500906-3)the Scientific and Technological Innovation Guiding Fund Project of Inner Mongolia Autonomous Region of China(R&D and Demonstration of Ecological Deserticulture Technology of Solar Photovoltaic Power Station in Sand Area)and the Scientific Research Project of Universities in Inner Mongolia Autonomous Region of China(NJZY19052).
文摘Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by surface erosion that may occur after the construction of the solar PVpower station. In order to avoid damage to a solar PV power station in sandy areas, it is necessary toinvestigate the characteristics of wind-sand movement under the interference of solar PV array. The studywas undertaken by measuring sediment transport of different wind directions above shifting dunes andthree observation sites around the PV panels in the Hobq Desert, China. The results showed that the twoparameterexponential function provides better fit for the measured flux density profiles to the near-surfaceof solar PV array. However, the saltation height of sand particles changes with the intersection anglebetween the solar PV array and wind direction exceed 45°. The sediment transport rate above shifting duneswas always the greatest, while that around the test PV panels varied accordingly to the wind direction.Moreover, the aeolian sediment transport on the solar PV array was significantly affected by wind direction.The value of sand inhibition rate ranged from 35.46% to 88.51% at different wind directions. When theintersection angle exceeds 45°, the mean value of sediment transport rate above the solar PV array reducesto 82.58% compared with the shifting dunes. The results of our study expand our understanding of theformation and evolution of aeolian geomorphology at the solar PV footprint. This will facilitate the designand control engineering plans for solar PV array in sandy areas that operate according to the wind regime.
文摘This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 MHz. The simulations were carried out by means of a code,HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from 10^(11) cm^(-3) to 10^(13) cm^(-3). The magnetic field was 200, 400, 600 and 1000 G. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece–Gould(TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile.Power deposition was considerably asymmetric when the n/B_0 ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately n_0 =10^(11) cm^(-3), irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was 10^(12) cm^(-3). The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.
基金The project supported by the Meg-science Engineering Project of the Chinese Academy of Sciences
文摘Ion Bernstein waves (IBWs) have been proposed to be useful for heating and improving transport in tokamak plasmas. An Ion Bernstein wave heating experiment using different frequency (27 MHz and 30 MHz) was carried out on HT-7 superconducting tokamak in recent experiments. At a frequency of 30 MHz, ne peaked and Ha dropped have been pervasively observed, Tp was improved by a factor of 2 - 4, and Te increased by a factor of 1 - 1.5. An obvious confinement of particle was observed during the IBW pulse. At 27MHz, both global and localized electron heating were observed depending on the location of the ion resonant layer by changing Bt. Central electron heating effect was obtained in the global heating mode and electron temperature strongly increased near the 2 ΩD resonant layer for localized heating mode.
基金The project supported by Natural Science Foundation of Education Department of Hunan Province of China under Grant No. 04C711 and National Natural Science Foundation of China under Grant No. 20546004.
文摘A bridge function approximation is proposed for a single-component fluid consisting of penetrable sphere interacting via a potential that remains finite and constant for center-center distance smaller than the particle diameter and is zero otherwise. The radial distribution function from the Ornstein-Zernike integral equation combined with the present bridge function approximation is in satisfactory agreement with the corresponding simulation data for all of the investigated state points. The presently calculated excess Helmholtz free energy respectively based on virial route and compressibility route is highly self-consistent, and is in very good agreement with simulational results for the case of low temperatures. The present bridge function approximation, combined with the bridge density functional approximation, can reproduce very accurately density profiles of the penetrable sphere fluid confined in a hard spherical cavity for all the cases where simulational results are available.
基金the National MCF Energy R&D Program of China(No.2018YFE0310300)National Natural Science Foundation of China(Nos.11905080 and 51821005)。
文摘The J-TEXT three-wave polarimeter-interferometer system(POLARIS),which measures timespace distribution of electron density and current density,has been optimized with both the optical system and the equilibrium reconstruction method.The phase resolution of a Faraday rotation angle has been improved from 0.1 to 0.06 degree in chords from–0.18 to 0.18 m(plasma minor radius),and the sawtooth oscillation behavior has been detected by Faraday rotation angle measurement.By combining the POLARIS measured data and the equilibrium and fitting code(EFIT),an upgraded equilibrium reconstruction method has been developed,which provides a more accurate temporal and spatial distribution of current density and electron density.By means of the optimized POLARIS and improved equilibrium reconstruction,variations of profiles with increasing density have been carried out,under both Ohmic and electron cyclotron resonance heating discharges.