期刊文献+
共找到14,977篇文章
< 1 2 250 >
每页显示 20 50 100
Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter 被引量:1
1
作者 Tao Chen Qianrui Liu +2 位作者 Yu Liu Liang Sun Mohan Chen 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第1期44-57,共14页
In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at ... In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter. 展开更多
关键词 STOCHASTIC theory functional
下载PDF
Density functional theory study of B- and Si-doped carbons and their adsorption interactions with sulfur compounds
2
作者 Peng Guo Hong Zhang +1 位作者 Shuliang Dong Libao An 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期195-208,共14页
Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batt... Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batteries.In this paper,properties of intrinsic B or Si single-atom doped,and B-Si codoped graphene(GR)and graphdiyne(GDY)were investigated by using density functional theory-based calculations,in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds.Results showed that both B or Si single-atom doping and B-Si codoping could substantially enhance the electron transport properties of GR and GDY,improving their surface activity.Notably,B and Si atoms displayed synergistic effects for the codoped configurations,where B-Si codoped GR/GDY exhibited much better performance in the adsorption of sulfurcontaining chemicals than single-atom doped systems.In addition,results demonstrated that,after B-Si codoping,the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR,indicating that B-Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents. 展开更多
关键词 ADSORPTION density functional theory DOPING graphdiyne GRAPHENE sulfur compounds
下载PDF
Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
3
作者 孙宗利 康艳霜 康艳梅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期594-603,共10页
Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean... Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions. 展开更多
关键词 thermal conductivity nano-fluidic films density functional theory
下载PDF
Sensitivity impacts owing to the variations in the type of zero-range pairing forces on the fission properties using the density functional theory
4
作者 Yang Su Ze-Yu Li +3 位作者 Li-Le Liu Guo-Xiang Dong Xiao-Bao Wang Yong-Jing Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期198-207,共10页
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair... Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data. 展开更多
关键词 Nuclear fission Density functional theory Pairing force Potential energy surfaces Fission fragment distribution
下载PDF
Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury:predictors of patient prognosis
5
作者 Sihong Huang Jungong Han +4 位作者 Hairong Zheng Mengjun Li Chuxin Huang Xiaoyan Kui Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1553-1558,共6页
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u... Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury. 展开更多
关键词 cognitive function CROSS-SECTION FOLLOW-UP functional connectivity graph theory longitudinal study mild traumatic brain injury prediction small-worldness structural connectivity subnetworks whole brain network
下载PDF
Solvent effects on Diels-Alder reaction in ionic liquids:A reaction density functional study
6
作者 Zijiang Dou Weiqiang Tang +1 位作者 Peng Xie Shuangliang Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期180-188,共9页
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However... Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions. 展开更多
关键词 Solvent effect Ionic liquids Diels-Alder reaction Reaction density functional theory
下载PDF
Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium
7
作者 Quoc-Hoa Pham Van Ke Tran Phu-Cuong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期77-99,共23页
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ... An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums. 展开更多
关键词 Plate-fluid contact Galerkin Vlasov's method Multi-directional functionally graded plate Novel porosity Thermal vibration Refined higher-order shear deformation theory
下载PDF
Game Theory Based Model for Predictive Analytics Using Distributed Position Function
8
作者 Mirhossein Mousavi Karimi Shahram Rahimi 《International Journal of Intelligence Science》 2024年第1期22-47,共26页
This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are d... This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are distributed over a position spectrum. We generalize the concept of position in the model to incorporate continuous positions for the actors, enabling them to have more flexibility in defining their targets. We explore different possible functions to study the role of the position function and discuss appropriate distance measures for computing the distance between the positions of actors. To validate the proposed extension, we demonstrate the trustworthiness of our model’s performance and interpretation by replicating the results based on data used in earlier studies. 展开更多
关键词 Distributed Position function Game theory Group Decision Making Predictive Analytics
下载PDF
Investigation of the structural, electronic and mechanical properties of CaO–SiO_(2) compound particles in steel based on density functional theory 被引量:1
9
作者 Chao Gu Ziyu Lyu +1 位作者 Qin Hu Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期744-755,共12页
CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the struct... CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the structural, electronic, and mechanical properties of the compounds in CaO–SiO_(2)system are still not fully clarified due to the difficulties in the experiments. In this study, a thorough investigation of these properties of CaO–SiO_(2)compound particles in steels was conducted based on first-principles density functional theory. Corresponding phases were determined by thermodynamic calculation, including gamma dicalcium silicate(γ-C2S), alpha-prime(L) dicalcium silicate(αL′-C2S), alpha-prime(H) dicalcium silicate(αH′-C2S), alpha dicalcium silicate(α-C2S), rankinite(C3S2), hatrurite(C3S), wollastonite(CS), and pseudowollastonite(Ps-CS). The results showed that the calculated crystal structures of the eight phases agree well with the experimental results. All the eight phases are stable according to the calculated formation energies, and γ-C2S is the most stable. O atom contributes the most to the reactivity of these phases. The Young’s modulus of the eight phases is in the range of 100.63–132.04 GPa. Poisson’s ratio is in the range of0.249–0.281. This study provided further understanding concerning the CaO–SiO_(2)compound particles in steels and fulfilled the corresponding property database, paving the way for inclusion engineering and design in terms of fracture-resistant steels. 展开更多
关键词 CaO–SiO_(2) density functional theory structural property electronic property mechanical property
下载PDF
Ultra-deep Removal of Metal Ions from Coal Tar by Complexation:Experimental Studies and Density Functional Theory Simulations
10
作者 Wu Hao Wei Hongyuan Li Wangliang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期127-135,共9页
As one of the important aspects of upgrading coal tar,the ultra-deep removal of metal ions via the complexation method was investigated by screening four complexing agents and performing density functional theory(DFT)... As one of the important aspects of upgrading coal tar,the ultra-deep removal of metal ions via the complexation method was investigated by screening four complexing agents and performing density functional theory(DFT)simulations.Analysis of the compositions and contents of the metallic compounds in the coal tar revealed that the main components were iron and calcium naphthenates.Direct filtration reduced the mechanical impurity content from 0.24%to 0.0752%,indicating that most of the large particles could be easily removed.Among the four complexing agents,namely,acetic acid,oxalic acid,citric acid,and ethylenediaminetetraacetic acid,oxalic acid exhibited the best demetallization performance.The DFT simulations suggested that the high performance of oxalic acid originated from its 1:1 coordination mode,rigid dicarboxyl structure,and greater binding energy. 展开更多
关键词 COMPLEXATION metallic compounds coal tar UPGRADING density functional theory
下载PDF
Hydrogen evolution reaction between small-sized Zr_(n)(n=2–5)clusters and water based on density functional theory
11
作者 唐雷雷 史顺平 +5 位作者 宋永 胡家宝 刁凯 蒋静 段湛江 陈德良 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期429-434,共6页
Density functional theory(DFT)is used to calculate the most stable structures of Zr_(n)(n=2-5)clusters as well as the adsorption energy values of Zr_(n)(n=2-5)clusters after adsorbing single water molecule.The results... Density functional theory(DFT)is used to calculate the most stable structures of Zr_(n)(n=2-5)clusters as well as the adsorption energy values of Zr_(n)(n=2-5)clusters after adsorbing single water molecule.The results reveal that there is a significant linear relationship between the adsorption energy values and the energy gaps of the Zr_(n)(n=2-5)clusters.Furthermore,the calculations of the reaction paths between Zr_(n)(n=2-5)and single water molecule show that water molecule can react with Zr_(n)(n=2-5)clusters to dissociate,producing hydrogen,and O atoms mix with the clusters to generate Zr_(n)O(n=2-5),all of which are exothermic reactions.According to the released energy,the Zr4 cluster is the most efficient in Zr_(n)(n=2-5)clusters reacting with single water molecule.The natural population analysis(NPA)and density of states(DOS)demonstrate the production of hydrogen and orbital properties in different energy ranges,respectively,jointly forecasting that Zr_(n)O(n=2-5)will probably continue to react with more water molecules.Our findings contribute to better understanding of Zr's chemical reactivity,which can conduce to the development of effective Zr-based catalysts and hydrogen-production methods. 展开更多
关键词 density functional theory hydrogen evolution reaction NBO analysis reaction pathways
下载PDF
Direct atomic-level insight into oxygen reduction reaction on size-dependent Pt-based electrocatalysts from density functional theory calculations
12
作者 Fangren Qian Lishan Peng +2 位作者 Yujuan Zhuang Lei Liu Qingjun Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期140-146,共7页
Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR cataly... Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR catalysts by density functional theory calculations,ranging from single-atom,nanocluster to bulk Pt catalysts.The results showed that the ORR overpotential of these Pt-based catalysts increased when its size enlarged to the nanoparticle scale or reduced to the single-atom scale,and the Pt_(38)cluster had the lowest ORR overpotential(0.46 V)compared with that of Pt_(111)(0.57 V)and single atom Pt(0.7 V).Moreover,we established a volcano curve relationship between the ORR overpotential and binding energy of O*(ΔE_(O*),confirming the intermediate species anchored on Pt38cluster with suitable binding energy located at top of volcano curve.The interaction between intermediate species and Pt-based catalysts were also investigated by the charge distribution and projected density of state and which further confirmed the results of volcano curve. 展开更多
关键词 Density functional theory(DFT) calculations Pt-based electrocatalysts Oxygen reduction reaction
下载PDF
Calculation of microscopic nuclear level densities based on covariant density functional theory
13
作者 Kun-Peng Geng Peng-Xiang Du +1 位作者 Jian Li Dong-Liang Fang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第9期118-127,共10页
In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth... In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data. 展开更多
关键词 Nuclear level density Covariant density functional theory Combinatorial method
下载PDF
Density Functional Theory Study of Marine Polybrominated Diphenyl Ethers in Anaerobic Degradation
14
作者 XU Xiang MAN Miaomiao +3 位作者 SUN Qinxing LIU Qingzhi WU Kechen YANG Dengfeng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1353-1360,共8页
Polybrominated diphenyl ethers(PBDEs)are a kind of serious pollutants in the ocean.Biodegradation is considered as an economical and safe way for PBDEs removal and reductive debromination dominates the initial pathway... Polybrominated diphenyl ethers(PBDEs)are a kind of serious pollutants in the ocean.Biodegradation is considered as an economical and safe way for PBDEs removal and reductive debromination dominates the initial pathway of anaerobic degradation.On the basis of experimental study,Octa-BDE 197,Hepta-BDE 183,Hexa-BDE 153,Penta-BDE 99 and Tetra-BDE 47 were selected as the initial degradation objects,and their debromination degradation were studied using density functional theory.The structures were optimized by Gaussian 09 program.Furthermore,the molecular orbitals and charge distribution were analyzed.All C-Br bond dissociation energies at different positions including ortho,meta and para bromine atoms were calculated and the sequence of debromination was obtained.There is a close relationship between molecular structure,charge,molecular orbital and C-Br bond.All PBDEs exhibited similar debromination pathways with preferential removal of meta and para bromines. 展开更多
关键词 polybrominated diphenyl ethers reductive debromination anaerobic degradation density functional theory bond dissociation energies
下载PDF
Bending and wave propagation analysis of axially functionally graded beams based on a reformulated strain gradient elasticity theory
15
作者 Shaopeng WANG Jun HONG +1 位作者 Dao WEI Gongye ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1803-1820,共18页
A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain g... A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain gradient, velocity gradient,and couple stress effects, and accounts for the material variation along the axial direction of the two-component functionally graded beam. The governing equations and complete boundary conditions of the AFG beam are derived based on Hamilton's principle. The correctness of the current model is verified by comparing the static behavior results of the current model and the finite element model(FEM) at the micro-scale. The influence of material inhomogeneity and size effect on the static and dynamic responses of the AFG beam is studied. The numerical results show that the static and vibration responses predicted by the newly developed model are different from those based on the classical model at the micro-scale. The new model can be applied not only in the optimization of micro acoustic wave devices but also in the design of AFG micro-sensors and micro-actuators. 展开更多
关键词 Timoshenko beam theory reformulated strain gradient elastic theory(RSGET) axially functionally graded(AFG)material Hamilton's principle
下载PDF
Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory
16
作者 Xinte WANG Juan LIU +2 位作者 Biao HU Bo ZHANG Huoming SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1821-1840,共20页
This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is ... This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is simulated by the honeycomb-shaped symmetrical and asymmetrical distribution functions.The nonlocal strain gradient theory(NSGT) and first-order shear deformation theory are used to determine the size effect and shear deformation,respectively.Nonlocal governing equations are derived for the nanoshells by Hamilton's principle.The resulting dimensionless differential equations are solved by means of an analytical solution of the combined exponential function after dimensionless treatment.Finally,extensive parametric surveys are conducted to investigate the influence of diverse parameters,such as dimensionless scale parameters,radiusto-thickness ratios,bi-directional functionally graded(FG) indices,porosity coefficients,and dimensionless electromagnetic potentials on the wave propagation characteristics.Based on the analysis results,the effect of the dimensionless scale parameters on the dispersion relationship is found to be related to the ratio of the scale parameters.The wave propagation characteristics of nanoshells in the presence of a magnetoelectric field depend on the bi-directional FG indices. 展开更多
关键词 bi-directional functionally graded(FG) wave propagation dimensionless magneto-electro-elastic(MEE)nanoshell nonlocal strain gradient theory(NSGT) porosity
下载PDF
Computational Investigation of Neutral and Anionic Al_nCo_m Clusters by Density-functional Theory 被引量:1
17
作者 赵晋婧 郭玲 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第5期816-824,共9页
Structural and electronic properties of bimetallic clusters AlnCom with n=1~7 and m=1~2 have been investigated using the B3LYP-DFT method.Structural optimization and frequency analysis were performed at the CEP-121G... Structural and electronic properties of bimetallic clusters AlnCom with n=1~7 and m=1~2 have been investigated using the B3LYP-DFT method.Structural optimization and frequency analysis were performed at the CEP-121G level.The charge-induced structural changes in these anions were discussed.In addition,the corresponding total energies,binding energies,adiabatic electron affinities and vertical electron affinity were also presented and discussed.Our predicted vertical ionization potentials are in reasonable agreement with the experimental ionization potentials.Among different AlnCom and AlnCom-anions (n=1~7,m=1~2),Al4Co,Al6Co,Al4Co-,Al6Co-and Al4Co2-are predicted to be species with high stabilities. 展开更多
关键词 density functional theory bimetallic aluminumcobalt clusters CEP-121G level stability
下载PDF
A density-functional-theory-based and machine-learning-accelerated hybrid method for intricate system catalysis 被引量:2
18
作者 Xuhao Wan Zhaofu Zhang +1 位作者 Wei Yu Yuzheng Guo 《Materials Reports(Energy)》 2021年第3期81-90,共10页
Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional de... Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional density functional theory(DFT)method,showing a particular advantage for the simulation of intricate system catalysis.Starting with a basic description of the whole workflow of the novel DFT-based and ML-accelerated(DFT-ML)scheme,and the common algorithms useable for machine learning,we presented in this paper our work on the development and performance test of a DFT-based ML method for catalysis program(DMCP)to implement the DFT-ML scheme.DMCP is an efficient and user-friendly program with the flexibility to accommodate the needs of performing ML calculations based on the data generated by DFT calculations or from materials database.We also employed an example of transition metal phthalocyanine double-atom catalysts as electrocatalysts for carbon reduction reaction to exhibit the general workflow of the DFT-ML hybrid scheme and our DMCP program. 展开更多
关键词 DMCP program Machine learning Density functional theory DFT-ML hybrid Scheme CATALYSIS Double-atom catalysts
下载PDF
Chemical Reactivity Description in Density-Functional and Information Theories 被引量:2
19
作者 NALEWAJSKI Roman F. 《物理化学学报》 SCIE CAS CSCD 北大核心 2017年第12期2491-2509,共19页
In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generate... In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient(electronic current). The classical Shannon(S[p]) and Fisher(I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[ Φ ] and I[ Φ ], provide relevant coherence information supplements.Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density,which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction.Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R = A―B, composed of the Acidic(A) and Basic(B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A―B bond multiplicity/composition are extracted. 展开更多
关键词 density-functional theory Donor-acceptor system Electronegativity equalization and electron flows Information theory Markov chains PHASE-EQUILIBRIA
下载PDF
Application of density-functional theory to studying methylation with dimethyl carbonate and dimethyl sulfate 被引量:1
20
作者 张定林 《Journal of Chongqing University》 CAS 2007年第3期161-165,共5页
The activities of dimethyl carbonate and dimethyl sulfate as a methylation reagent were studied by density-functional theory (DFT). B3LYP/6-31G(d, p) methods were used to optimize the structures of dimethyl carbonate ... The activities of dimethyl carbonate and dimethyl sulfate as a methylation reagent were studied by density-functional theory (DFT). B3LYP/6-31G(d, p) methods were used to optimize the structures of dimethyl carbonate and dimethyl sulfate and calculate theirs charge densities. Dimethyl sulfate is easier than dimethyl carbonate to react with a nucleophilic reagent. In dimethyl sulfate, the alkoxy carbons are the only reactive atomic nucleus because of steric hindrance. A nucleophilic reagent is more likely to react with carbonyl carbons than alkoxy carbons of dimethyl carbonate;in the presence of a Lewis acid, the phenyl nucleophilic reagent reacts with the Lewis acid first. Lewis acid increases the negative charge density of a nucleophilic reagent in polar solvent, and also incurs an accretion of steric hindrance. Polar solvent avails to ionize dimethyl carbonate and thus enables the reaction of methylation. The frequencies of transition state calculated by Gaussion 03 confirm the inferred reaction mechanism. The harvest rates of 4-methoxyphenol in the experiments of methylation reactions of hydroquinone with respectively dimethyl carbonate and dimethyl sulfate support the foregoing theortical conclusions. 展开更多
关键词 度函数理论 二甲基碳酸盐 二甲基硫酸盐 化学分析
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部