期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Expert System for the Diagnosis and Prognosis of Common Dental Diseases Using Bayes Network
1
作者 Grace Tam-Nurseman Philip Achimugu +2 位作者 Oluwatolani Achimugu Hilary Kelechi Anabi Sseggujja Husssein 《Journal of Biomedical Science and Engineering》 2021年第11期361-370,共10页
Expert systems are being utilized increasingly in medical fields for the purposes of assisting diagnosis and treatment planning. Existing systems used few symptoms for dental diagnosis. In Dentistry, few symptoms are ... Expert systems are being utilized increasingly in medical fields for the purposes of assisting diagnosis and treatment planning. Existing systems used few symptoms for dental diagnosis. In Dentistry, few symptoms are not enough for diagnosis. In this research, a conditional probability model (Bayes rule) was developed with increased number of symptoms associated with a disease for diagnosis. A test set of recurrent cases was then used to test the diagnostic capacity of the system. The generated diagnosis matched that of the human experts. The system was also tested for its capacity to handle uncommon dental diseases and the system portrayed useful potential. 展开更多
关键词 Expert System dental diagnosis dental Diseases and Human Expert
下载PDF
Classification and detection of dental images using meta-learning
2
作者 Pradeep Kumar Yadalam Raghavendra Vamsi Anegundi +1 位作者 Mario Alberto Alarcón-Sánchez Artak Heboyan 《World Journal of Clinical Cases》 SCIE 2024年第32期6559-6562,共4页
Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teachi... Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teaching a model how to learn.Algorithms for meta-learning are typically trained on a collection of training problems,each of which has a limited number of labelled instances.Multiple Xray classification tasks,including the detection of pneumonia,coronavirus disease 2019,and other disorders,have demonstrated the effectiveness of meta-learning.Meta-learning has the benefit of allowing models to be trained on dental X-ray datasets that are too few for more conventional machine learning methods.Due to the high cost and lengthy collection process associated with dental imaging datasets,this is significant for dental X-ray classification jobs.The ability to train models that are more resistant to fresh input is another benefit of meta-learning. 展开更多
关键词 Artificial intelligence META-LEARNING dental diagnosis Image segmentation Medical image interpretation dental radiography
下载PDF
Expediting carbon dots synthesis by the active adaptive method with machine learning and applications in dental diagnosis and treatment
3
作者 Yaoyao Tang Quan Xu +3 位作者 Xinyao Zhang Rongye Zhu Nuo Zhao Juncheng Wang 《Nano Research》 SCIE EI 2024年第11期10109-10118,共10页
Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaus... Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaustive attempts, and exorbitant manpower costs. Machine learning (ML) burgeons and provokes an interest in rationally designing and synthesizing materials. Here, we collect the dataset of nano-functional materials carbon dots (CDs) on synthetic parameters and optical properties. ML is applied to assist the synthesis process to enhance photoluminescence quantum yield (QY) by building the methodology named active adaptive method (AAM), including the model selection, max points screen, and experimental verification. An interactive iteration strategy is the first time considered in AAM with the constant acquisition of the furnished data by itself to perfect the model. CDs exhibit a strong red emission with QY up to 23.3% and enhancement of around 200% compared with the pristine value obtained through the AAM guidance. Furthermore, the guided CDs are applied as metal ions probes for Co^(2+) and Fe^(3+), with a concentration range of 0–120 and 0–150 µM, and their detection limits are 1.17 and 0.06 µM. Moreover, we also apply CDs for dental diagnosis and treatment using excellent optical ability. It can effectively detect early caries and treat mineralization combined with gel. The study shows that the error of experiment verification gradually decreases and QY improves double with the effective feedback loops by AAM, suggesting the great potential of utilizing ML to guide the synthesis of novel materials. Finally, the code is open-source and provided to be referenced for further investigation on the novel inorganic material prediction. 展开更多
关键词 machine learning simulated annealing active adaptive method carbon dots Ions detection dental diagnosis and treatment
原文传递
Intelligent Prediction Approach for Diabetic Retinopathy Using Deep Learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs 被引量:2
4
作者 G.Arun Sampaul Thomas Y.Harold Robinson +3 位作者 E.Golden Julie Vimal Shanmuganathan Seungmin Rho Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第2期1613-1629,共17页
Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and... Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and eye pain and it cannot be detected with a naked eye.In this paper,a new methodology based on Convolutional Neural Networks(CNN)is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses.The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy.The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers.The feature loss factor increases the label value to identify the patterns with the kernel-based matching.The performance of the proposed model is compared with the related methods of DREAM,KNN,GD-CNN and SVM.Experimental results show that the proposed CNN performs better. 展开更多
关键词 Convolutional neural networks dental diagnosis image recognition diabetic retinopathy detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部