The key technology and the main mechanism of microcrystallizing leucite to reinforce dental glass ceramics were investigated.The feedstock powders were selected,mixed according to the ratios of the theoretical composi...The key technology and the main mechanism of microcrystallizing leucite to reinforce dental glass ceramics were investigated.The feedstock powders were selected,mixed according to the ratios of the theoretical composition of leucite,ball-milled,melted at 1600℃ and then cooled to room temperature quickly.The cooled clinkers were ball-milled again to 4 μm.After cold-isostatic pressure molded and air sintered at 1500℃ for 1 h,the dental glass ceramics were fabricated.They have following characteristics:excellent mechanical properties (mean compressive strength is 206.6 MPa),low sintering temperature and good reoccurrence to keep steady quality.展开更多
Objective:To evaluate the shear bond strength(SBS) between alumina-toughened zirconia (ATZ) cores and veneering ceramics,investigate the effect of aging in artificial saliva on SBS and compare it with that of yttria-s...Objective:To evaluate the shear bond strength(SBS) between alumina-toughened zirconia (ATZ) cores and veneering ceramics,investigate the effect of aging in artificial saliva on SBS and compare it with that of yttria-stabilized tetragonal zirconia polycrystals(Y-TZP).Methods:Bars of ATZ and Y-TZP were layered with veneering ceramics in accordance to the recommendation of the manufacturer.Half of each group(n = 10) was aged at 134℃.(under 2 bar pressure) in an autoclave for 48 h.Subsequently,all specimens were subjected to shear force in a universal testing machine.The interface and fractured surface of the specimens were evaluated using scanning electron microscopy and X-ray energy dispersive spectroscopy.Results:The initial mean SBS values in MPa±SD were 28.9±8.0 for ATZ and 26.2±7.6 for Y-TZP.After aging,the mean SBS values for ATZ and Y-TZP were 22.9±4.9 MPa and 22.8±6.9 MPa,respectively.Neither the differences between the SBS values of the ATZ and Y-TZP groups nor the influence of aging on all groups were statistically significant.Conclusions:The SBS between the ATZ core and the veneering ceramics was not affected by aging.The SBS of ATZ to veneering ceramics was not significantly different compared with that of Y-TZP.展开更多
The novel dental ceramics can be fabricated at lower temperatures when sol-gel derived lithium disilicate glass ceramics(LDGC)was used as an additive for yttria stabilized tetragonal zirconia polycrystalline(Y-TZP)cer...The novel dental ceramics can be fabricated at lower temperatures when sol-gel derived lithium disilicate glass ceramics(LDGC)was used as an additive for yttria stabilized tetragonal zirconia polycrystalline(Y-TZP)ceramics.The effect of LDGC on the sintering,mechanical,and translucent properties of Y-TZP ceramics was investigated in the present study.The results showed that the LDGC additive effectively improved the densification of Y-TZP at 1100℃,which was much lower than the sintering temperature for pure Y-TZP.When sintered at 1100℃,the Y-TZP with 1 wt%LDGC reached a relative density of 95.45%,and prossessed a flexural strength of 482.4 MPa and a fracture toughness of 5.94 MPa-m12.Moreover,its translucency was also improved.While,the addition of LDGC could result in an escape of yttrium atoms from the grain lattice of zirconia,which induced the tetragonal-monoclinic transformation of zirconia and abnormal growth of monoclinic grains.The escaped yttrium atoms diffused into the intergranular glass phase.The results indicated that the novel Y-TZP-LDGC ceramics has a great potential to be used for all-ceramic restorations.展开更多
Clinically,fractures are the main cause of computer-aided design and computer-aided manufacturing(CAD/CAM)3 mol%-yttria-stabilized tetragonal zirconia polycrystal(Y-TZP)all-ceramic dental restorations failure because ...Clinically,fractures are the main cause of computer-aided design and computer-aided manufacturing(CAD/CAM)3 mol%-yttria-stabilized tetragonal zirconia polycrystal(Y-TZP)all-ceramic dental restorations failure because of repetitive occlusal loading.The goal of this work is to study the effect of test methods and specimen’s size on the flexural strength of five ceramic products.Both biaxial flexure test(BI)and uni-axial flexure tests(UNI),including three-point flexure test(3PF)and four-point flexure test(4PF),are used in this study.For all five products,the flexural strength is as follows:BI>3PF>4PF.Furthermore,specimens with smaller size(3PF-s)have higher values than the bigger ones(3PF).The difference between BI and UNI resulted from the edge flaws in ceramic specimens.The relationship between different UNI(including 3PF-s,3PF and 4PF)can be explained according to Weibull statistical fracture theory.BI is recommended to evaluate the flexural strength of CAD/CAM Y-TZP dental ceramics.展开更多
Porcelain laminate veneers have been a common treatment strategy in dental clinics. It is a conservative method for treatment of esthetic and functional problems in anterior region of oral cavity. Wide range of dental...Porcelain laminate veneers have been a common treatment strategy in dental clinics. It is a conservative method for treatment of esthetic and functional problems in anterior region of oral cavity. Wide range of dental ceramics is now available on market for fabrication of laminate veneers. Clinician should have enough knowledge regarding the composition and properties of these materials in order to be able to choose the appropriate one according to clinical situations.展开更多
The biocompatibility of biphasicα,β-tricalcium phosphate ceramics,obtained by annealing a compact preform based onβ-tricalcium phosphate powder,was studied in vitro.It was found that within 10–30 days the adhesion...The biocompatibility of biphasicα,β-tricalcium phosphate ceramics,obtained by annealing a compact preform based onβ-tricalcium phosphate powder,was studied in vitro.It was found that within 10–30 days the adhesion of primary dental pulp stem cells located on the surface of biphasicα,β-tricalcium phosphate ceramics is suppressed.Decrease of the cell number on the surface of biphasicα,β-tricalcium phosphate ceramics,most likely,can be associated with both the pH level(acidic)as a result of hydrolysis of the more soluble phase ofα-tricalcium phosphate and with the nature of surface that changes as a result of the formation and growth of hydroxyapatite crystals.展开更多
Objective:To assess the biomechanical properties of a new design configuration for zirconia dental implants. Methods: The new design has a cylindrical shape that is partially hollow and porous in the bottom, which per...Objective:To assess the biomechanical properties of a new design configuration for zirconia dental implants. Methods: The new design has a cylindrical shape that is partially hollow and porous in the bottom, which permits the implants to be locked into the alveolar bone over time. It also utilizes bioactive glass coatings to increase adhesion to surrounding bone structure. Samples of the new design were fabricated in the laboratory and their material strength, hardness, and fracture toughness were evaluated. In addition, biocompatibility of the new design was evaluated through testing in dogs. Results: Results of mechanical tests indicate that structural properties of the new design exceed the usual requirements for implants. Moreover, animal tests suggest that there is appreciable improvement in lock-in strength and osteointegration. Conclusion: The new design configuration is biomechanically feasible and further research is warranted to improve the design for human use.展开更多
In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered...In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered at 1 350℃, 1 400 ℃, 1 450 ℃,1 500 ℃, respectively, then were treated by soaking in artificial saliva (65 ℃, pH=7) for two months. The treated specimens sintered at 1 350 ℃ showed there was no phase transformation but whose strength and toughnesswere significantly improved (P〈0.05), while those sintered at 1 400 ℃- 1 500 ℃ revealed a small amount of phase transformation and insignificant mechanical reinforcement (P〉0.05). No microcracks were detected but increment in lattice volume was found in all specimens. Lowering sintering temperature favors aging resistance and mechanical reinforcement of 3Y-TZP in a simulated oral environment.展开更多
This research study the effect of diode laser (810 nm), with various power (30, 200, 500) mW in hardness of the material used in the combinations of teeth (ceramics). Hardness was measured for dental ceramic samples d...This research study the effect of diode laser (810 nm), with various power (30, 200, 500) mW in hardness of the material used in the combinations of teeth (ceramics). Hardness was measured for dental ceramic samples divided into four groups, each group containing ten test sample, before and after it irradiated with the diode laser with wavelength 810 nm and different power (30, 200, 500) mW, with irradiation power of 200 mW for duration two minutes and ten minutes to the third and fourth groups, and irradiation power of 30 and 500 mW for duration one minute for the last two groups. The results showed that the increase in the irradiated time of the samples from two minutes to ten minutes, as well as increased power from 30 to 500 mW does not have a significant effect in increasing the hardness of the ceramic material. This study found that the hardness ratio of the samples was increased up to (18.28%), by irradiation of invisible diode laser 810 nm, 30 mW.展开更多
Since the last two decades, restorative dentistry has been witnessing an increased acceptance of the use of the well-known all-ceramic materials for the fabrication of single dental restorations, such as inlays, onlay...Since the last two decades, restorative dentistry has been witnessing an increased acceptance of the use of the well-known all-ceramic materials for the fabrication of single dental restorations, such as inlays, onlays, crowns, anterior and posterior fixed partial dentures (PFPDs). These restorations certainly offer the potential for better biocompatibility coupled with superior aesthetic qualities, especially when compared with the conventional prostheses made from porcelain that is fused with metal ceramic restorations. However, brittleness and extreme sensitivity of all-ceramic materials to micro-like defects or cracks that are inherently present, or may grow, in their microstructure during different laboratory fabrication steps, during necessary clinical adjustments, or from post-placement chewing activity, remain major shortcomings of these dental restorations. In fact, many researchers are of the opinion that the improved mechanical properties can significantly improve the lifetime of all-ceramic restorations and result in enhanced reliability. Therefore, efforts of researchers, as well as manufacturers, have been directed towards the improvement of the mechanical properties in order to overcome such limitations. This article reviews the characterization of the most important mechanical properties that can delineate the behavior of all-ceramic dental materials upon loading. These include fracture mechanics, the brittle nature of ceramics, the relationship between microstructural features and fracture behavior, sources of cracks and flaws that may initiate a fracture and the effect of different fabrication procedures and/or clinical adjustments on the mechanical behavior of dental ceramics are also reviewed and discussed.展开更多
文摘The key technology and the main mechanism of microcrystallizing leucite to reinforce dental glass ceramics were investigated.The feedstock powders were selected,mixed according to the ratios of the theoretical composition of leucite,ball-milled,melted at 1600℃ and then cooled to room temperature quickly.The cooled clinkers were ball-milled again to 4 μm.After cold-isostatic pressure molded and air sintered at 1500℃ for 1 h,the dental glass ceramics were fabricated.They have following characteristics:excellent mechanical properties (mean compressive strength is 206.6 MPa),low sintering temperature and good reoccurrence to keep steady quality.
基金supported by National High-Tech Research and Development Program of China(863 Program)(No.2006AA03Z440)
文摘Objective:To evaluate the shear bond strength(SBS) between alumina-toughened zirconia (ATZ) cores and veneering ceramics,investigate the effect of aging in artificial saliva on SBS and compare it with that of yttria-stabilized tetragonal zirconia polycrystals(Y-TZP).Methods:Bars of ATZ and Y-TZP were layered with veneering ceramics in accordance to the recommendation of the manufacturer.Half of each group(n = 10) was aged at 134℃.(under 2 bar pressure) in an autoclave for 48 h.Subsequently,all specimens were subjected to shear force in a universal testing machine.The interface and fractured surface of the specimens were evaluated using scanning electron microscopy and X-ray energy dispersive spectroscopy.Results:The initial mean SBS values in MPa±SD were 28.9±8.0 for ATZ and 26.2±7.6 for Y-TZP.After aging,the mean SBS values for ATZ and Y-TZP were 22.9±4.9 MPa and 22.8±6.9 MPa,respectively.Neither the differences between the SBS values of the ATZ and Y-TZP groups nor the influence of aging on all groups were statistically significant.Conclusions:The SBS between the ATZ core and the veneering ceramics was not affected by aging.The SBS of ATZ to veneering ceramics was not significantly different compared with that of Y-TZP.
基金supported by the Shanghai Committee of Science and Technology,China(No.17441904100).
文摘The novel dental ceramics can be fabricated at lower temperatures when sol-gel derived lithium disilicate glass ceramics(LDGC)was used as an additive for yttria stabilized tetragonal zirconia polycrystalline(Y-TZP)ceramics.The effect of LDGC on the sintering,mechanical,and translucent properties of Y-TZP ceramics was investigated in the present study.The results showed that the LDGC additive effectively improved the densification of Y-TZP at 1100℃,which was much lower than the sintering temperature for pure Y-TZP.When sintered at 1100℃,the Y-TZP with 1 wt%LDGC reached a relative density of 95.45%,and prossessed a flexural strength of 482.4 MPa and a fracture toughness of 5.94 MPa-m12.Moreover,its translucency was also improved.While,the addition of LDGC could result in an escape of yttrium atoms from the grain lattice of zirconia,which induced the tetragonal-monoclinic transformation of zirconia and abnormal growth of monoclinic grains.The escaped yttrium atoms diffused into the intergranular glass phase.The results indicated that the novel Y-TZP-LDGC ceramics has a great potential to be used for all-ceramic restorations.
基金This work was supported by grants from Natural Science Foundation of China(81200814)National Key Technology R&D Program of China(no.2012BAI22B03).
文摘Clinically,fractures are the main cause of computer-aided design and computer-aided manufacturing(CAD/CAM)3 mol%-yttria-stabilized tetragonal zirconia polycrystal(Y-TZP)all-ceramic dental restorations failure because of repetitive occlusal loading.The goal of this work is to study the effect of test methods and specimen’s size on the flexural strength of five ceramic products.Both biaxial flexure test(BI)and uni-axial flexure tests(UNI),including three-point flexure test(3PF)and four-point flexure test(4PF),are used in this study.For all five products,the flexural strength is as follows:BI>3PF>4PF.Furthermore,specimens with smaller size(3PF-s)have higher values than the bigger ones(3PF).The difference between BI and UNI resulted from the edge flaws in ceramic specimens.The relationship between different UNI(including 3PF-s,3PF and 4PF)can be explained according to Weibull statistical fracture theory.BI is recommended to evaluate the flexural strength of CAD/CAM Y-TZP dental ceramics.
文摘Porcelain laminate veneers have been a common treatment strategy in dental clinics. It is a conservative method for treatment of esthetic and functional problems in anterior region of oral cavity. Wide range of dental ceramics is now available on market for fabrication of laminate veneers. Clinician should have enough knowledge regarding the composition and properties of these materials in order to be able to choose the appropriate one according to clinical situations.
文摘The biocompatibility of biphasicα,β-tricalcium phosphate ceramics,obtained by annealing a compact preform based onβ-tricalcium phosphate powder,was studied in vitro.It was found that within 10–30 days the adhesion of primary dental pulp stem cells located on the surface of biphasicα,β-tricalcium phosphate ceramics is suppressed.Decrease of the cell number on the surface of biphasicα,β-tricalcium phosphate ceramics,most likely,can be associated with both the pH level(acidic)as a result of hydrolysis of the more soluble phase ofα-tricalcium phosphate and with the nature of surface that changes as a result of the formation and growth of hydroxyapatite crystals.
文摘Objective:To assess the biomechanical properties of a new design configuration for zirconia dental implants. Methods: The new design has a cylindrical shape that is partially hollow and porous in the bottom, which permits the implants to be locked into the alveolar bone over time. It also utilizes bioactive glass coatings to increase adhesion to surrounding bone structure. Samples of the new design were fabricated in the laboratory and their material strength, hardness, and fracture toughness were evaluated. In addition, biocompatibility of the new design was evaluated through testing in dogs. Results: Results of mechanical tests indicate that structural properties of the new design exceed the usual requirements for implants. Moreover, animal tests suggest that there is appreciable improvement in lock-in strength and osteointegration. Conclusion: The new design configuration is biomechanically feasible and further research is warranted to improve the design for human use.
基金Funded by the National High Technology Research and Development Program of China (No.2006AA03Z440)
文摘In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered at 1 350℃, 1 400 ℃, 1 450 ℃,1 500 ℃, respectively, then were treated by soaking in artificial saliva (65 ℃, pH=7) for two months. The treated specimens sintered at 1 350 ℃ showed there was no phase transformation but whose strength and toughnesswere significantly improved (P〈0.05), while those sintered at 1 400 ℃- 1 500 ℃ revealed a small amount of phase transformation and insignificant mechanical reinforcement (P〉0.05). No microcracks were detected but increment in lattice volume was found in all specimens. Lowering sintering temperature favors aging resistance and mechanical reinforcement of 3Y-TZP in a simulated oral environment.
文摘This research study the effect of diode laser (810 nm), with various power (30, 200, 500) mW in hardness of the material used in the combinations of teeth (ceramics). Hardness was measured for dental ceramic samples divided into four groups, each group containing ten test sample, before and after it irradiated with the diode laser with wavelength 810 nm and different power (30, 200, 500) mW, with irradiation power of 200 mW for duration two minutes and ten minutes to the third and fourth groups, and irradiation power of 30 and 500 mW for duration one minute for the last two groups. The results showed that the increase in the irradiated time of the samples from two minutes to ten minutes, as well as increased power from 30 to 500 mW does not have a significant effect in increasing the hardness of the ceramic material. This study found that the hardness ratio of the samples was increased up to (18.28%), by irradiation of invisible diode laser 810 nm, 30 mW.
文摘Since the last two decades, restorative dentistry has been witnessing an increased acceptance of the use of the well-known all-ceramic materials for the fabrication of single dental restorations, such as inlays, onlays, crowns, anterior and posterior fixed partial dentures (PFPDs). These restorations certainly offer the potential for better biocompatibility coupled with superior aesthetic qualities, especially when compared with the conventional prostheses made from porcelain that is fused with metal ceramic restorations. However, brittleness and extreme sensitivity of all-ceramic materials to micro-like defects or cracks that are inherently present, or may grow, in their microstructure during different laboratory fabrication steps, during necessary clinical adjustments, or from post-placement chewing activity, remain major shortcomings of these dental restorations. In fact, many researchers are of the opinion that the improved mechanical properties can significantly improve the lifetime of all-ceramic restorations and result in enhanced reliability. Therefore, efforts of researchers, as well as manufacturers, have been directed towards the improvement of the mechanical properties in order to overcome such limitations. This article reviews the characterization of the most important mechanical properties that can delineate the behavior of all-ceramic dental materials upon loading. These include fracture mechanics, the brittle nature of ceramics, the relationship between microstructural features and fracture behavior, sources of cracks and flaws that may initiate a fracture and the effect of different fabrication procedures and/or clinical adjustments on the mechanical behavior of dental ceramics are also reviewed and discussed.