Optical coherence tomography(OCT)and Raman spectroscopy(RS)can be complementary biological tissue optical analysis methods.To study the internal structure and tissue compositions of biological samples,an OCT-RS system...Optical coherence tomography(OCT)and Raman spectroscopy(RS)can be complementary biological tissue optical analysis methods.To study the internal structure and tissue compositions of biological samples,an OCT-RS system was built to carry out OCT section imaging and RS analysis in common.Neocaridina denticulate sinensis were collected regularly for morphological observation by OCT imaging and biochemical investigation based on the Raman spectra.The internal structure of the N.denticulate sinensis was imaged by OCT,and the morphology of the tissues and the position in the body were distinguished according to the gray scale changes.The imaging depth along the vertical direction of Z-axis in N.denticulate sinensis is about 1.60 mm.RS detection was selectively performed based on the OCT images.The main Raman peaks of the rostrum,the cephalothorax,the abdominal segment,and the telson section are at 1006,1156,1447,1491 and 1515 cm-1,which are identified as proteins and amino acids.The presence of 1497 cm-1 at the cephalothorax is different from other parts,probably due to the presence of organs such as ovary,whose compositions are different from those of other tissues.The combination of optical coherence tomography and Raman spectroscopy can provide information about morphological and biochemical features of tissues,and has potential applications in biomedical detection and imaging.展开更多
The beginning of the Japanese Upper Paleolithic has mainly been examined using two major models:the Middle Paleolithic evolutionary model within the archipelago and the continental Upper Paleolithic diffusion/migratio...The beginning of the Japanese Upper Paleolithic has mainly been examined using two major models:the Middle Paleolithic evolutionary model within the archipelago and the continental Upper Paleolithic diffusion/migration model.However,recent archeological data from Japan and nearby countries are challenging such simple models.This paper critically reviews previous chronology of the Japanese Paleolithic,including possible Lower and Middle Paleolithic(LP/MP),and attempts to show an alternative model of the beginning of the Japanese Upper Paleolithic.This paper suggests several possible specimens of LP/MP and recommends further geoarchaeological investigation to understand the reliability and cultural relationship between possible LP/MP specimens and the Early Upper Paleolithic(EUP).The start of the Japanese EUP is presently characterized by a flake industry with trapezoids and denticulates around 39-37 kaBP cal on Paleo-Honshu Island,which has partial resemblance with contemporary assemblages in China and the Korean Peninsula,although trapezoids are endemic only to the Japanese EUP and may have derived from the ancestral lithic tradition.Blade technology appeared earliest on Central Paleo-Honshu Island,about 1000 years later than the earliest flake technology.Although blade technology may have originated from the elongated flake technology of the previous period,the sudden simultaneous emergence implies that it diffused from the Korean Peninsula.This paper proposes that blade technology from the Korean Peninsula arrived on the northeastern Paleo-Honshu Island,including the Japan Sea coastal region of western Honshu,rather than the southwest,where flake technology long prospered,due to differences in ecological settings and adaptation strategies between the two regions.展开更多
基金supported by National Natural Science Foundation of China(No.41476081)the Major Research and Development Project in Shandong Province(No.2019GHY112027)。
文摘Optical coherence tomography(OCT)and Raman spectroscopy(RS)can be complementary biological tissue optical analysis methods.To study the internal structure and tissue compositions of biological samples,an OCT-RS system was built to carry out OCT section imaging and RS analysis in common.Neocaridina denticulate sinensis were collected regularly for morphological observation by OCT imaging and biochemical investigation based on the Raman spectra.The internal structure of the N.denticulate sinensis was imaged by OCT,and the morphology of the tissues and the position in the body were distinguished according to the gray scale changes.The imaging depth along the vertical direction of Z-axis in N.denticulate sinensis is about 1.60 mm.RS detection was selectively performed based on the OCT images.The main Raman peaks of the rostrum,the cephalothorax,the abdominal segment,and the telson section are at 1006,1156,1447,1491 and 1515 cm-1,which are identified as proteins and amino acids.The presence of 1497 cm-1 at the cephalothorax is different from other parts,probably due to the presence of organs such as ovary,whose compositions are different from those of other tissues.The combination of optical coherence tomography and Raman spectroscopy can provide information about morphological and biochemical features of tissues,and has potential applications in biomedical detection and imaging.
基金JSPS KAKENHI Grant Numbers 18H03596(PI:Yosuke Kaifu)JP19H01336(PI:Hiroyuki Sato)21H00608(PI:Kazuki Morisaki)。
文摘The beginning of the Japanese Upper Paleolithic has mainly been examined using two major models:the Middle Paleolithic evolutionary model within the archipelago and the continental Upper Paleolithic diffusion/migration model.However,recent archeological data from Japan and nearby countries are challenging such simple models.This paper critically reviews previous chronology of the Japanese Paleolithic,including possible Lower and Middle Paleolithic(LP/MP),and attempts to show an alternative model of the beginning of the Japanese Upper Paleolithic.This paper suggests several possible specimens of LP/MP and recommends further geoarchaeological investigation to understand the reliability and cultural relationship between possible LP/MP specimens and the Early Upper Paleolithic(EUP).The start of the Japanese EUP is presently characterized by a flake industry with trapezoids and denticulates around 39-37 kaBP cal on Paleo-Honshu Island,which has partial resemblance with contemporary assemblages in China and the Korean Peninsula,although trapezoids are endemic only to the Japanese EUP and may have derived from the ancestral lithic tradition.Blade technology appeared earliest on Central Paleo-Honshu Island,about 1000 years later than the earliest flake technology.Although blade technology may have originated from the elongated flake technology of the previous period,the sudden simultaneous emergence implies that it diffused from the Korean Peninsula.This paper proposes that blade technology from the Korean Peninsula arrived on the northeastern Paleo-Honshu Island,including the Japan Sea coastal region of western Honshu,rather than the southwest,where flake technology long prospered,due to differences in ecological settings and adaptation strategies between the two regions.