It is a common issue to compare treatment-specific survival and the weighted log-rank test is the most popular method for group comparison. However, in observational studies, treatments and censoring times are usually...It is a common issue to compare treatment-specific survival and the weighted log-rank test is the most popular method for group comparison. However, in observational studies, treatments and censoring times are usually not independent, which invalidates the weighted log-rank tests. In this paper, we propose adjusted weighted log-rank tests in the presence of non-random treatment assignment and dependent censoring. A double-inverse weighted technique is developed to adjust the weighted log-rank tests. Specifically, inverse probabilities of treatment and censoring weighting are involved to balance the baseline treatment assignment and to overcome dependent censoring, respectively. We derive the asymptotic distribution of the proposed adjusted tests under the null hypothesis, and propose a method to obtain the critical values. Simulation studies show that the adjusted log-rank tests have correct sizes whereas the traditional weighted log-rank tests may fail in the presence of non-random treatment assignment and dependent censoring. An application to oropharyngeal carcinoma data from the Radiation Therapy Oncology Group is provided for illustration.展开更多
In epidemiological and clinical studies,the restricted mean lifetime is often of direct interest quantity.The differences of this quantity can be used as a basis of comparing several treatment groups with respect to t...In epidemiological and clinical studies,the restricted mean lifetime is often of direct interest quantity.The differences of this quantity can be used as a basis of comparing several treatment groups with respect to their survival times.When the factor of interest is not randomized and lifetimes are subject to both dependent and independent censoring,the imbalances in confounding factors need to be accounted.We use the mixture of additive hazards model and inverse probability of censoring weighting method to estimate the differences of restricted mean lifetime.The average causal effect is then obtained by averaging the differences in fitted values based on the additive hazards models.The asymptotic properties of the proposed method are also derived and simulation studies are conducted to demonstrate their finite-sample performance.An application to the primary biliary cirrhosis(PBC)data is illustrated.展开更多
Yu et al. (2012) considered a certain dependent right censorship model. We show that this model is equivalent to the independent right censorship model, extending a result with continuity restriction in Williams and L...Yu et al. (2012) considered a certain dependent right censorship model. We show that this model is equivalent to the independent right censorship model, extending a result with continuity restriction in Williams and Lagakos (1977). Then the asymptotic normality of the product limit estimator under the dependent right censorship model follows from the existing results in the literature under the independent right censorship model, and thus partially solves an open problem in the literature.展开更多
Nonparametric estimation of a survival function is one of the most commonly asked questions in the analysis of failure time data and for this, a number of procedures have been developed under various types of censorin...Nonparametric estimation of a survival function is one of the most commonly asked questions in the analysis of failure time data and for this, a number of procedures have been developed under various types of censoring structures (Kalbfleisch and Prentice, 2002). In particular, several algorithms are available for interval-censored failure time data with independent censoring mechanism (Sun, 2006; Turnbull, 1976). In this paper, we consider the interval-censored data where the censoring mechanism may be related to the failure time of interest, for which there does not seem to exist a nonparametric estimation procedure. It is well-known that with informative censoring, the estimation is possible only under some assumptions. To attack the problem, we take a copula model approach to model the relationship between the failure time of interest and censoring variables and present a simple nonparametric estimation procedure. The method allows one to conduct a sensitivity analysis among others.展开更多
Length-biased data are often encountered in observational studies, when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution. In this article, we propose to a...Length-biased data are often encountered in observational studies, when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution. In this article, we propose to analyze such data with the additive hazards model, which specifies that the hazard function is the sum of an arbitrary baseline hazard function and a regression function of covariates. We develop estimating equation approaches to estimate the regression parameters. The resultant estimators are shown to be consistent and asymptotically normal. Some simulation studies and a real data example are used to evaluate the finite sample properties of the proposed estimators.展开更多
基金Supported by Beijing Municipal Education Commission (Grant No. KM202010028017)the National Natural Science Foundation of China (Grant Nos. 11771431 and 11690015)+2 种基金the Key Laboratory of RCSDSCAS (Grant No. 2008DP173182)the Academy for Multidisciplinary Studies of Capital Normal University。
文摘It is a common issue to compare treatment-specific survival and the weighted log-rank test is the most popular method for group comparison. However, in observational studies, treatments and censoring times are usually not independent, which invalidates the weighted log-rank tests. In this paper, we propose adjusted weighted log-rank tests in the presence of non-random treatment assignment and dependent censoring. A double-inverse weighted technique is developed to adjust the weighted log-rank tests. Specifically, inverse probabilities of treatment and censoring weighting are involved to balance the baseline treatment assignment and to overcome dependent censoring, respectively. We derive the asymptotic distribution of the proposed adjusted tests under the null hypothesis, and propose a method to obtain the critical values. Simulation studies show that the adjusted log-rank tests have correct sizes whereas the traditional weighted log-rank tests may fail in the presence of non-random treatment assignment and dependent censoring. An application to oropharyngeal carcinoma data from the Radiation Therapy Oncology Group is provided for illustration.
基金partly supported by the National Natural Science Foundation of China(11671268,11771431 and 11690015)the Key Laboratory of RCSDS,CAS(2008DP173182)。
文摘In epidemiological and clinical studies,the restricted mean lifetime is often of direct interest quantity.The differences of this quantity can be used as a basis of comparing several treatment groups with respect to their survival times.When the factor of interest is not randomized and lifetimes are subject to both dependent and independent censoring,the imbalances in confounding factors need to be accounted.We use the mixture of additive hazards model and inverse probability of censoring weighting method to estimate the differences of restricted mean lifetime.The average causal effect is then obtained by averaging the differences in fitted values based on the additive hazards models.The asymptotic properties of the proposed method are also derived and simulation studies are conducted to demonstrate their finite-sample performance.An application to the primary biliary cirrhosis(PBC)data is illustrated.
文摘Yu et al. (2012) considered a certain dependent right censorship model. We show that this model is equivalent to the independent right censorship model, extending a result with continuity restriction in Williams and Lagakos (1977). Then the asymptotic normality of the product limit estimator under the dependent right censorship model follows from the existing results in the literature under the independent right censorship model, and thus partially solves an open problem in the literature.
基金Supported by the National Natural Science Foundation of China(Grant No.11301037,11671054,11671168)
文摘Nonparametric estimation of a survival function is one of the most commonly asked questions in the analysis of failure time data and for this, a number of procedures have been developed under various types of censoring structures (Kalbfleisch and Prentice, 2002). In particular, several algorithms are available for interval-censored failure time data with independent censoring mechanism (Sun, 2006; Turnbull, 1976). In this paper, we consider the interval-censored data where the censoring mechanism may be related to the failure time of interest, for which there does not seem to exist a nonparametric estimation procedure. It is well-known that with informative censoring, the estimation is possible only under some assumptions. To attack the problem, we take a copula model approach to model the relationship between the failure time of interest and censoring variables and present a simple nonparametric estimation procedure. The method allows one to conduct a sensitivity analysis among others.
基金Supported by the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities(16JJD910002)supported by the State Key Program of National Natural Science Foundation of China(71331006)+3 种基金the State Key Program in the Major Research Plan of National Natural Science Foundation of China(91546202)National Center for Mathematics and Interdisciplinary Sciences(NCMIS)Key Laboratory of RCSDS,AMSS,CAS(2008DP173182)Innovative Research Team of Shanghai University of Finance and Economics(IRTSHUFE13122402)
文摘Length-biased data are often encountered in observational studies, when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution. In this article, we propose to analyze such data with the additive hazards model, which specifies that the hazard function is the sum of an arbitrary baseline hazard function and a regression function of covariates. We develop estimating equation approaches to estimate the regression parameters. The resultant estimators are shown to be consistent and asymptotically normal. Some simulation studies and a real data example are used to evaluate the finite sample properties of the proposed estimators.