As a direct wide bandgap semiconductor,CsPbCl_(3)has great potential applications in the eld of near-ultraviolet photodetectors,lasers and higher-order multiphoton uores-cent detectors.In this work,we synthesized CsPb...As a direct wide bandgap semiconductor,CsPbCl_(3)has great potential applications in the eld of near-ultraviolet photodetectors,lasers and higher-order multiphoton uores-cent detectors.In this work,we synthesized CsPbCl_(3)micro/nanocrystals by vapor depo-sition method with CsCl and PbCl_(2)powders as the source materials.It was con rmed that the formation of CsPbCl_(3)perovskite through the chemical reaction of CsCl with PbCl_(2)occurred in the quartz boat before the source evaporation,not in vapor or on sub-strate surface.The evaporated CsPbCl_(3)can form micro/nanocrystals on substrate surfaces under appropriate conditions.Various morphologies including irregular polyhedrons,rods and pyramids could be observed at lower temperature,while stable and uniform CsPbCl_(3)single crystal microplatelets were controllably synthesized at 450℃.Prolonging the growth time could modulate the size and density of the microcrystals,but could not change the morphology.Substrate types made little di erence to the morphology of CsPbCl_(3)crystals.The photoluminescence spectra indicated that the crystallinity and morphology of CsPbCl_(3)micro/nanocrystals have signi cant e ects on their optical properties.The work is expected to be helpful to the development of optoelectronic devices based on individual CsPbCl_(3)microcrystal.展开更多
Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoerciviti...Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.展开更多
A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ra...A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy.Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746nm to 770nm with the increase of the reaction time, on account of the exchanges between I- ions and Br- ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet.展开更多
Janus films with asymmetric physical/chemical properties have attracted con siderable attention due to their promising applications in personal thermal management,electronic skin s,sensors,actuators,etc.However,tradit...Janus films with asymmetric physical/chemical properties have attracted con siderable attention due to their promising applications in personal thermal management,electronic skin s,sensors,actuators,etc.However,traditional methods for fabricating Janus films conventionally need the assistance of an interface or auxiliary equipment,which are usually complex and time-consuming.Herein,flexible poly(vinyl alcohol)(PVA)/graphene oxide(GO)/h-BN(recorded as PVA/GO/h-BN)Janus films with thermally,optically,and electrically anisotropic properties are fabricated by a simple density deposition self-assem bly method,which just utilizes the density difference between GO and h-BN during water evaporation.Experimental results show that the two sides of the acquired Janus films have obvious asymmetric characteristics.In the original state of the PVA/GO/h-BN Janus films,the thermal conductivity of the GO side(10.06 W·m^(-1)·K^(-1))is generally lower than that of the h-BN side(10.48W·m^(-1)·K^(-1)).But after GO is reduced,the thermal conductivity of the rGO side reaches 12.17 W·m^(-1)·K^(-1),surpassing that of the h-BN side.In addition,the relative reflectance of the h-BN side of Janus film is also significantly higher than that of the rGO side,and the su rface resistance difference between the two sides is about 4 orders of magnitude.The prepared PVA/GO/h-BN Janus films show great application potential in human thermal management,light conversion switches,and electronic skins.This study provides a simple and versatile strategy for fabricating Janus films with multifunctional(such as thermal,optical,and electrical)anisotropies.展开更多
Fractal and multi-fractal content area method finds application in a wide variety of geological,geochemical and geophysical fields.In this study,the fractal content-gradient method was used on1:10,000 scale to deline...Fractal and multi-fractal content area method finds application in a wide variety of geological,geochemical and geophysical fields.In this study,the fractal content-gradient method was used on1:10,000 scale to delineate geochemical anomalies associated with copper mineralization.Analysis of geochemical data from the Yangla super large Cu-Pb-Zn polymetallic ore district using the fractal content-gradient method,combined with other geological data from this area,indicates that oreprospecting in the ore district should focus on Cu as the main metal and Pb-Zn and Au as the auxiliary metals.The types of deposits include(in chronological order) re-formed sedimentary exhalative(SEDEX),skarns,porphyries,and hydrothermal vein-type deposits.Three ore-prospecting targets are divided on a S-N basis:(1) the Qulong exploration area,in which the targets are porphyry-type Cu deposits;(2) the Zongya exploration area,where the targets are porphyry-type Cu and hydrothermal vein-type Cu-Pb polymetallic deposits;and(3) the Zarelongma exploration area,characterized mainly skarn-type "Yangla-style" massive sulfide Cu-Pb deposits.Our study demonstrates that the fractal content-gradient method is convenient,simple,rapid,and direct for delineating geochemical anomalies and for outlining potential exploration targets.展开更多
La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by...La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by XRD and SEM, and the results indicate that the thin films are grown with mainly (100) oriented and columnar structures. The ferroelectricity and piezoelectricity of the BI-PT films are also measured, and the measured results illustrate that both performances are effectively improved by the La-doping with suitable concentrations. These results will open up wide potential applications of the films in electronic devices.展开更多
A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon sour...A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment.展开更多
Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are inve...Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are investigated.The structures of the xBI-(1-x)PT films are characterized by x-ray diffraction and scanning electron microscopy.The results indicate that the thin films are grown with mainly(001) orientation. The chemical compositions of the films are analyzed by scanning electron probe and the results indicate that the loss phenomena of Pb and Bi elements depend on the pressure and temperature during the sputtering process.The sputtering parameters including target composition, substrate temperature, and gas pressure are adjusted to obtain optimum sputtering conditions. To decrease leakage currents,2 mol% La2 O3 is doped in the targets. The P-E hysteresis loops show that the optimized xBI-(1-x)PT(x = 0.24) film has high ferroelectricities with remnant polarization2 Pr = 80μC/cm2 and coercive electric field 2 EC = 300 kV/cm. The Curie temperature is about 640℃. The results show that the films have optimum performance and will have wide applications.展开更多
It is well known that the photocatalytic activity of TiO_2 thin filmsstrongly depends on the preparing methods and post-treatment conditions, since they have a decisiveinfluence on the chemical and physical properties...It is well known that the photocatalytic activity of TiO_2 thin filmsstrongly depends on the preparing methods and post-treatment conditions, since they have a decisiveinfluence on the chemical and physical properties of TiO_2 thin films. Therefore, it is necessary toelucidate the influence of the preparation process and post-treatment conditions on thephoto-catalytic activity and surface microstructures of the films. This review deals with thepreparation of TiO_2 thin film photo-catalysts by wet-chemical methods (such as sol-gel,-reversemicellar and liquid phase deposition) and the comparison of various preparation methods as well astheir advantage and disadvantage. Furthermore, it is discussed that the advancement ofphotocatalytic activity, super-hydrophilicity and bactericidal activity of TiO_2 thin filmphotocatalyst in recent years.展开更多
Thin cuprous oxide films have been prepared by chemical vapor deposition(pulsed spray evaporation-chemical vapor deposition)method without post-treatment.The synthesis of cuprous oxide was produced by applying a water...Thin cuprous oxide films have been prepared by chemical vapor deposition(pulsed spray evaporation-chemical vapor deposition)method without post-treatment.The synthesis of cuprous oxide was produced by applying a water strategy effect.Then,the effect of water on the morphology,topology,structure,optical properties and surface composition of the obtained films has been comprehensively investigated.The results reveal that a pure phase of Cu2O was obtained.The introduction of a small quantity of water in the liquid feedstock lowers the band gap energy from 2.16 eV to 2.04 eV.This finding was mainly related to the decrease of crystallite size due to the effect of water.The topology analyses,by using atomic force microscope,also revealed that surface roughness decreases with water addition,namely more uniform covered surface.Moreover,theoretical calculations based on density functional theory method were performed to understand the adsorption and reaction behaviors of water and ethanol on the Cu2O thin film surface.Formation mechanism of the Cu2O thin film was also suggested and discussed.展开更多
In the present investigation, we fabricated strontium (Sr2+) incorporated CsPbI2Br-based inorganic perovskite solar cells in ambient conditions. The morphology, crystallinity, absorption, elemental composition and pho...In the present investigation, we fabricated strontium (Sr2+) incorporated CsPbI2Br-based inorganic perovskite solar cells in ambient conditions. The morphology, crystallinity, absorption, elemental composition and photoluminescence analysis of the bare CsPbI2Br and CsPb1-xSrxI2Br perovskite thin films were studied systematically to investigate the role of Sr2+ incorporation. It is observed that the surface morphology of the CsPbI2Br perovskite thin film has been improved by partial substitution of Pb2+ by Sr2+ which facilitates photoactive black phase-stabilization and defect passivation. The champion device having CsPb0.98Sr0.02I2Br composition exhibited a power conversion efficiency (PCE) of 16.61% which is much higher than the bare device (13.65%). Furthermore, our CsPb0.98Sr0.02I2Br-based devices maintain > 85% of its initial efficiency over 100 h in ambient conditions.展开更多
Quasi-one-dimensional ZrS_(3)nanoflakes attract intense interest attributed to their superior electrical and optical anisotropy,stemming from the low symmetry in the crystal structure.However,the conventional chemical...Quasi-one-dimensional ZrS_(3)nanoflakes attract intense interest attributed to their superior electrical and optical anisotropy,stemming from the low symmetry in the crystal structure.However,the conventional chemical vapor transport method for synthesizing bulk ZrS_(3)is limited by morphology and size controllability.It is highly desirable to propose a facile way to precisely synthesize ZrS_(3)nanoflakes.In this work,the chemical vapor deposition method is proposed as a feasible way to synthesize ZrS_(3)nanoflakes.The effects of various substrates and temperatures on ZrS_(3)synthesis have been investigated.For the as-grown ZrS_(3),good crystallinity is confirmed with X-ray diffraction and transmission electron microscopy.The structure and interlayer coupling are investigated with Raman scattering spectroscopy.The strong in-plane anisotropy and interlayer coupling of the ZrS_(3)nanoflakes are illustrated with angle-resolved Raman spectroscopy and temperature-dependent Raman characterization,respectively.This study demonstrates a feasible way for the synthesis of transition metal trisulfides,which may shed new light on the research of other two-dimensional anisotropic transition metal materials.展开更多
Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to r...Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to represent surface interactions allows the simulation of agglomeration and deposition at the particle scale. The numerical model adopts a mechanistic approach to represent the forces involved in colloidal suspensions by including near-wall drag retardation, surface interaction and Brownian forces. The model is implemented using the commercially available DEM package EDEM 2.3~, so that results can be repli- cated in a standard and user-friendly framework. The effects of various particle-to-collector size ratios, inlet fluid flow-rates and particle concentrations are examined and it is found that deposition efficiency is strongly dependent on the inter-relation of these parameters. Particle deposition and re-suspension mechanisms have been identified and analyzed thanks to EDEM's post processing capability. One-way coupling with computational fluid dynamics (CFD) is considered and results are compared with a two- way coupling between EDEM 2.3 and FLUENT 12.1. It is found that two-way coupling requires circa 500% more time than one-way coupling for similar results.展开更多
For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital ...For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.展开更多
First mirrors are the facing components of plasma optical diagnostics system for superconductivity and other fusion devices. Due to high level of neutron and gamma radiation, the lifetime and optical state of first mi...First mirrors are the facing components of plasma optical diagnostics system for superconductivity and other fusion devices. Due to high level of neutron and gamma radiation, the lifetime and optical state of first mirror will face an enormous challenge. The degradation of the optical character on the mirror surface mainly comes from the two opposite processes, one is erosion, the other is re-deposition. Which proces plays more important role need testing in present machines. Before 2001 the experimental studies mainly put on material character simulation in a laboratory. Recently, the sample of the first mirror has been investigated in actual fusion device and modification of mirror optical properties was made. But how to protect mirror and make the lifetime longer will be an issue need solving urgently.展开更多
Perovskite/silicon tandem solar cells(PVSK/Si TSCs)have emerged as a promising photovoltaic technology toward achieving a high power conversion efficiency(PCE)along with cost‐effective manufacturing.The PCE of PVSK/S...Perovskite/silicon tandem solar cells(PVSK/Si TSCs)have emerged as a promising photovoltaic technology toward achieving a high power conversion efficiency(PCE)along with cost‐effective manufacturing.The PCE of PVSK/Si TSCs has skyrocketed to a certified 33.9%,surpassing the theoretical limit of any single‐junction solar cell.This achievement is partially attributed to ad-vancements in surface textures for Si bottom cells.In this regard,we present an overview of the recent developments concerning surface textures of Si in monolithic PVSK/Si TSCs,including planar,pyramid texture,and nanotexture.Following,the prevailing perovskite deposition methods on these textures are thoroughly discussed,and the corresponding challenges are evaluated.Addi-tionally,we provide a summary of the advanced morphological,structural,optical,and electrical characterization techniques being utilized for theses textures.Finally,the prospects for further development of PVSK/Si TSCs are outlined,including designing novel textures with industrial compatibility,developing perovskite deposition methods with scalability,and exploring more pertinent characterization techniques for textured PVSK/Si TSCs.展开更多
Bioactive calcium phosphate coatings were prepared on AZ91D magnesium alloy in phosphating solution in order to im- prove the corrosion resistance of the magnesium alloy in Simulated Body Fluid (SBF). The surface mo...Bioactive calcium phosphate coatings were prepared on AZ91D magnesium alloy in phosphating solution in order to im- prove the corrosion resistance of the magnesium alloy in Simulated Body Fluid (SBF). The surface morphologies and compo- sitions of the calcium phosphate coatings deposited in the phosphating bath with different compositions were investigated by Scanning Electron Microscopy (SEM) with Energy Dispersive Spectrometer (EDS) and X-ray Diffraction (XRD). Results showed that the calcium phosphate coating was mainly composed of dicalcium phosphate dihydrate (CaHPO4o2H20, DCPD), with Ca/P ratio of approximately 1 : 1. The corrosion resistance was evaluated by acid drop, electrochemical polarization, elec- trochemical impedance spectroscopy and immersion tests. The dense and uniform calcium phosphate coating obtained from the optimal phosphating bath can greatly decrease the corrosion rate and hydrogen evolution rate of AZ91D magnesium alloy in SBE展开更多
We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on a...We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300-1150 cm2/(V.s).展开更多
Experiments carried out using a lung model with a single horizontal bifurcation under different steady inhalation conditions explored the orientation of depositing carbon fibers, and particle deposition frac- tions. T...Experiments carried out using a lung model with a single horizontal bifurcation under different steady inhalation conditions explored the orientation of depositing carbon fibers, and particle deposition frac- tions. The orientations of deposited fibers were obtained from micrographs. Specifically, the effects of the sedimentation parameter (γ), fiber length, and flow rate on orientations were analyzed. Our results indicate that gravitational effect on deposition cannot be neglected for 0.0228 〈 γ 〈 0.247. The absolute orientation angle of depositing fibers decreased linearly with increasing y for values 0.0228 〈 γ 〈 0.15. Correspondence between Stokes numbers and y suggests these characteristics can be used to estimate fiber deposition in the lower airways. Computer simulations with sphere-equivalent diameter models for the fibers explored deposition efficiency vs. Stokes number. Using the volume-equivalent diameter model, our experimental data for the horizontal bifurcation were replicated. Results for particle deposition using a lung model with a vertical bifurcation indicate that body position also affects deposition.展开更多
Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra c...Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra costs to manage risk factors. In this article, we demonstrate that continuous monolayer graphene can be synthesized via chemical vapor deposition technique on Cu foils using industrially safe gas mixtures. Important factors, including the appropriate ratio of hydrogen flow and carbon precursor,pressure, and growth time are considered to obtain graphene films. Optical measurements and electrical transport measurements indicate graphene films are with comparable quality to other reports. Such continuous large area graphene can be synthesized under non-flammable and non-explosive conditions, which opens a safe and economical method for mass production of graphene. It is thereby beneficial for integration of graphene into semiconductor electronics.展开更多
基金supported by the National Natu-ral Science Foundation of China(No.11575187)the National Key Research and Development Program(No.2016YFB0700205).
文摘As a direct wide bandgap semiconductor,CsPbCl_(3)has great potential applications in the eld of near-ultraviolet photodetectors,lasers and higher-order multiphoton uores-cent detectors.In this work,we synthesized CsPbCl_(3)micro/nanocrystals by vapor depo-sition method with CsCl and PbCl_(2)powders as the source materials.It was con rmed that the formation of CsPbCl_(3)perovskite through the chemical reaction of CsCl with PbCl_(2)occurred in the quartz boat before the source evaporation,not in vapor or on sub-strate surface.The evaporated CsPbCl_(3)can form micro/nanocrystals on substrate surfaces under appropriate conditions.Various morphologies including irregular polyhedrons,rods and pyramids could be observed at lower temperature,while stable and uniform CsPbCl_(3)single crystal microplatelets were controllably synthesized at 450℃.Prolonging the growth time could modulate the size and density of the microcrystals,but could not change the morphology.Substrate types made little di erence to the morphology of CsPbCl_(3)crystals.The photoluminescence spectra indicated that the crystallinity and morphology of CsPbCl_(3)micro/nanocrystals have signi cant e ects on their optical properties.The work is expected to be helpful to the development of optoelectronic devices based on individual CsPbCl_(3)microcrystal.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51171001,51371009 and 50971003the Foundation of Key Laboratory of Neutron Physics of CAEP under Grant No 2014BB02
文摘Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.
文摘A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy.Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746nm to 770nm with the increase of the reaction time, on account of the exchanges between I- ions and Br- ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet.
基金financially supported by the National Natural Science Foundation of China(No.51373059)the Graphene Powder&Composite Materials Research Center of FujianXiamen Key Laboratory of Polymers and Electronic Materials。
文摘Janus films with asymmetric physical/chemical properties have attracted con siderable attention due to their promising applications in personal thermal management,electronic skin s,sensors,actuators,etc.However,traditional methods for fabricating Janus films conventionally need the assistance of an interface or auxiliary equipment,which are usually complex and time-consuming.Herein,flexible poly(vinyl alcohol)(PVA)/graphene oxide(GO)/h-BN(recorded as PVA/GO/h-BN)Janus films with thermally,optically,and electrically anisotropic properties are fabricated by a simple density deposition self-assem bly method,which just utilizes the density difference between GO and h-BN during water evaporation.Experimental results show that the two sides of the acquired Janus films have obvious asymmetric characteristics.In the original state of the PVA/GO/h-BN Janus films,the thermal conductivity of the GO side(10.06 W·m^(-1)·K^(-1))is generally lower than that of the h-BN side(10.48W·m^(-1)·K^(-1)).But after GO is reduced,the thermal conductivity of the rGO side reaches 12.17 W·m^(-1)·K^(-1),surpassing that of the h-BN side.In addition,the relative reflectance of the h-BN side of Janus film is also significantly higher than that of the rGO side,and the su rface resistance difference between the two sides is about 4 orders of magnitude.The prepared PVA/GO/h-BN Janus films show great application potential in human thermal management,light conversion switches,and electronic skins.This study provides a simple and versatile strategy for fabricating Janus films with multifunctional(such as thermal,optical,and electrical)anisotropies.
基金supported by the fund"Metallogenic Geodynamic Background,Process and Quantitative Evaluation of Super Large Fe-Cu Polymetallic Deposits,Qinghai Qimantag Area"(Grant No.1212011220929)from Beijing Key Laboratory of Land Resources Information Research and Development,China University of Geosciences,Beijing
文摘Fractal and multi-fractal content area method finds application in a wide variety of geological,geochemical and geophysical fields.In this study,the fractal content-gradient method was used on1:10,000 scale to delineate geochemical anomalies associated with copper mineralization.Analysis of geochemical data from the Yangla super large Cu-Pb-Zn polymetallic ore district using the fractal content-gradient method,combined with other geological data from this area,indicates that oreprospecting in the ore district should focus on Cu as the main metal and Pb-Zn and Au as the auxiliary metals.The types of deposits include(in chronological order) re-formed sedimentary exhalative(SEDEX),skarns,porphyries,and hydrothermal vein-type deposits.Three ore-prospecting targets are divided on a S-N basis:(1) the Qulong exploration area,in which the targets are porphyry-type Cu deposits;(2) the Zongya exploration area,where the targets are porphyry-type Cu and hydrothermal vein-type Cu-Pb polymetallic deposits;and(3) the Zarelongma exploration area,characterized mainly skarn-type "Yangla-style" massive sulfide Cu-Pb deposits.Our study demonstrates that the fractal content-gradient method is convenient,simple,rapid,and direct for delineating geochemical anomalies and for outlining potential exploration targets.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174142 and 11304160he National Basic Research Program of China under Grant No 2012CB921504the Special Fund for Public Interest of China under Grant No201510068
文摘La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by XRD and SEM, and the results indicate that the thin films are grown with mainly (100) oriented and columnar structures. The ferroelectricity and piezoelectricity of the BI-PT films are also measured, and the measured results illustrate that both performances are effectively improved by the La-doping with suitable concentrations. These results will open up wide potential applications of the films in electronic devices.
基金Funded by the National Natural Science Foundation of China(51165006)
文摘A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment.
基金Supported by the National Natural Science Foundation of China under Grant No 11304160the Special Fund for Public Interest of China under Grant No 201510068,and the NUPTFC under Grant No NY215111
文摘Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are investigated.The structures of the xBI-(1-x)PT films are characterized by x-ray diffraction and scanning electron microscopy.The results indicate that the thin films are grown with mainly(001) orientation. The chemical compositions of the films are analyzed by scanning electron probe and the results indicate that the loss phenomena of Pb and Bi elements depend on the pressure and temperature during the sputtering process.The sputtering parameters including target composition, substrate temperature, and gas pressure are adjusted to obtain optimum sputtering conditions. To decrease leakage currents,2 mol% La2 O3 is doped in the targets. The P-E hysteresis loops show that the optimized xBI-(1-x)PT(x = 0.24) film has high ferroelectricities with remnant polarization2 Pr = 80μC/cm2 and coercive electric field 2 EC = 300 kV/cm. The Curie temperature is about 640℃. The results show that the films have optimum performance and will have wide applications.
文摘It is well known that the photocatalytic activity of TiO_2 thin filmsstrongly depends on the preparing methods and post-treatment conditions, since they have a decisiveinfluence on the chemical and physical properties of TiO_2 thin films. Therefore, it is necessary toelucidate the influence of the preparation process and post-treatment conditions on thephoto-catalytic activity and surface microstructures of the films. This review deals with thepreparation of TiO_2 thin film photo-catalysts by wet-chemical methods (such as sol-gel,-reversemicellar and liquid phase deposition) and the comparison of various preparation methods as well astheir advantage and disadvantage. Furthermore, it is discussed that the advancement ofphotocatalytic activity, super-hydrophilicity and bactericidal activity of TiO_2 thin filmphotocatalyst in recent years.
基金supported by the Ministry of Science and Technology of China(No.2017YFA0402800)the National Natural Science and Technology of China(No.91541102 and No.51476168)+2 种基金the support by Chinese Academy of Sciences for Senior International Scientists within President’s International Fellowship Initiative(PIFI)programthe financial support during his Ph.D.research stay at Bielefeld UniversityThe Moroccan institute of IRESEN is acknowledged for the financial support(Innowind13 Nanolubricant)
文摘Thin cuprous oxide films have been prepared by chemical vapor deposition(pulsed spray evaporation-chemical vapor deposition)method without post-treatment.The synthesis of cuprous oxide was produced by applying a water strategy effect.Then,the effect of water on the morphology,topology,structure,optical properties and surface composition of the obtained films has been comprehensively investigated.The results reveal that a pure phase of Cu2O was obtained.The introduction of a small quantity of water in the liquid feedstock lowers the band gap energy from 2.16 eV to 2.04 eV.This finding was mainly related to the decrease of crystallite size due to the effect of water.The topology analyses,by using atomic force microscope,also revealed that surface roughness decreases with water addition,namely more uniform covered surface.Moreover,theoretical calculations based on density functional theory method were performed to understand the adsorption and reaction behaviors of water and ethanol on the Cu2O thin film surface.Formation mechanism of the Cu2O thin film was also suggested and discussed.
基金This work was supported by Priority Research Centre Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science,and Technology(NRF-2018R1A6A1A03024334)Also,this work was supported by Priority Research Centre Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science,and Technology(2020R1A2C2004880).
文摘In the present investigation, we fabricated strontium (Sr2+) incorporated CsPbI2Br-based inorganic perovskite solar cells in ambient conditions. The morphology, crystallinity, absorption, elemental composition and photoluminescence analysis of the bare CsPbI2Br and CsPb1-xSrxI2Br perovskite thin films were studied systematically to investigate the role of Sr2+ incorporation. It is observed that the surface morphology of the CsPbI2Br perovskite thin film has been improved by partial substitution of Pb2+ by Sr2+ which facilitates photoactive black phase-stabilization and defect passivation. The champion device having CsPb0.98Sr0.02I2Br composition exhibited a power conversion efficiency (PCE) of 16.61% which is much higher than the bare device (13.65%). Furthermore, our CsPb0.98Sr0.02I2Br-based devices maintain > 85% of its initial efficiency over 100 h in ambient conditions.
基金S.L.acknowledges the financial support from the National Natural Science Foundation of China(Nos.22175060 and 21975067)the Natural Science Foundation of Hunan Province of China(Nos.2021JJ10014 and 2021JJ30092)。
文摘Quasi-one-dimensional ZrS_(3)nanoflakes attract intense interest attributed to their superior electrical and optical anisotropy,stemming from the low symmetry in the crystal structure.However,the conventional chemical vapor transport method for synthesizing bulk ZrS_(3)is limited by morphology and size controllability.It is highly desirable to propose a facile way to precisely synthesize ZrS_(3)nanoflakes.In this work,the chemical vapor deposition method is proposed as a feasible way to synthesize ZrS_(3)nanoflakes.The effects of various substrates and temperatures on ZrS_(3)synthesis have been investigated.For the as-grown ZrS_(3),good crystallinity is confirmed with X-ray diffraction and transmission electron microscopy.The structure and interlayer coupling are investigated with Raman scattering spectroscopy.The strong in-plane anisotropy and interlayer coupling of the ZrS_(3)nanoflakes are illustrated with angle-resolved Raman spectroscopy and temperature-dependent Raman characterization,respectively.This study demonstrates a feasible way for the synthesis of transition metal trisulfides,which may shed new light on the research of other two-dimensional anisotropic transition metal materials.
文摘Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to represent surface interactions allows the simulation of agglomeration and deposition at the particle scale. The numerical model adopts a mechanistic approach to represent the forces involved in colloidal suspensions by including near-wall drag retardation, surface interaction and Brownian forces. The model is implemented using the commercially available DEM package EDEM 2.3~, so that results can be repli- cated in a standard and user-friendly framework. The effects of various particle-to-collector size ratios, inlet fluid flow-rates and particle concentrations are examined and it is found that deposition efficiency is strongly dependent on the inter-relation of these parameters. Particle deposition and re-suspension mechanisms have been identified and analyzed thanks to EDEM's post processing capability. One-way coupling with computational fluid dynamics (CFD) is considered and results are compared with a two- way coupling between EDEM 2.3 and FLUENT 12.1. It is found that two-way coupling requires circa 500% more time than one-way coupling for similar results.
基金Projects(51309089,11202063)supported by the National Natural Science Foundation of ChinaProject(2013BAB06B01)supported by the National High Technology Research and Development Program of China+1 种基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProject(BK20130846)supported by Natural Science Foundation of Jiangsu Province,China
文摘For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.
文摘First mirrors are the facing components of plasma optical diagnostics system for superconductivity and other fusion devices. Due to high level of neutron and gamma radiation, the lifetime and optical state of first mirror will face an enormous challenge. The degradation of the optical character on the mirror surface mainly comes from the two opposite processes, one is erosion, the other is re-deposition. Which proces plays more important role need testing in present machines. Before 2001 the experimental studies mainly put on material character simulation in a laboratory. Recently, the sample of the first mirror has been investigated in actual fusion device and modification of mirror optical properties was made. But how to protect mirror and make the lifetime longer will be an issue need solving urgently.
基金Zhejiang Provincial Natural Science Foundation of China,Grant/Award Number:LY24F040003Key Research and Development Program of Zhejiang Province,Grant/Award Numbers:2022C01215,2024C01092+3 种基金Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China,Grant/Award Number:LBMHD24E020002National Natural Science Foundation of China,Grant/Award Numbers:62204245,U23A200098China Postdoctoral Science Foundation,Grant/Award Number:2023M743620Key Research and Development Program of Ningbo,Grant/Award Number:2023Z151。
文摘Perovskite/silicon tandem solar cells(PVSK/Si TSCs)have emerged as a promising photovoltaic technology toward achieving a high power conversion efficiency(PCE)along with cost‐effective manufacturing.The PCE of PVSK/Si TSCs has skyrocketed to a certified 33.9%,surpassing the theoretical limit of any single‐junction solar cell.This achievement is partially attributed to ad-vancements in surface textures for Si bottom cells.In this regard,we present an overview of the recent developments concerning surface textures of Si in monolithic PVSK/Si TSCs,including planar,pyramid texture,and nanotexture.Following,the prevailing perovskite deposition methods on these textures are thoroughly discussed,and the corresponding challenges are evaluated.Addi-tionally,we provide a summary of the advanced morphological,structural,optical,and electrical characterization techniques being utilized for theses textures.Finally,the prospects for further development of PVSK/Si TSCs are outlined,including designing novel textures with industrial compatibility,developing perovskite deposition methods with scalability,and exploring more pertinent characterization techniques for textured PVSK/Si TSCs.
文摘Bioactive calcium phosphate coatings were prepared on AZ91D magnesium alloy in phosphating solution in order to im- prove the corrosion resistance of the magnesium alloy in Simulated Body Fluid (SBF). The surface morphologies and compo- sitions of the calcium phosphate coatings deposited in the phosphating bath with different compositions were investigated by Scanning Electron Microscopy (SEM) with Energy Dispersive Spectrometer (EDS) and X-ray Diffraction (XRD). Results showed that the calcium phosphate coating was mainly composed of dicalcium phosphate dihydrate (CaHPO4o2H20, DCPD), with Ca/P ratio of approximately 1 : 1. The corrosion resistance was evaluated by acid drop, electrochemical polarization, elec- trochemical impedance spectroscopy and immersion tests. The dense and uniform calcium phosphate coating obtained from the optimal phosphating bath can greatly decrease the corrosion rate and hydrogen evolution rate of AZ91D magnesium alloy in SBE
文摘We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300-1150 cm2/(V.s).
基金We acknowledge the financial support of the Foundation for the National Natural Science Foundation of China (No. 51176035), and Author of National Excellent Doctoral Dissertation of China (No. 201040). In addition, financial support was provided to Xiaole Chen under the Research and Innovation Project for College Gradua- tes of Jiangsu Province (CXZZ12_0099), the Fundamental Research Funds for the Central Universities, China Scholarship Council (No. 201306090085), and Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ1209). The experience gained by Xiaole Chen as a CSC-supported Visiting Student in the Computational Multi-Physics Lab (MAE Dept., NC State University, Raleigh, USA) is also acknowledged. Table 3, Figs. 5 and 7 were provided by Josin Tom, based on his spring 2015 course-project report for MAE558. Professor Goodarz Ahmadi at Clarkson Univer- sity (Clarkson, USA) provided advice for our experimental set-up, and Professor Yong Lu at Southeast University provided guidance in programming the image-processing method.
文摘Experiments carried out using a lung model with a single horizontal bifurcation under different steady inhalation conditions explored the orientation of depositing carbon fibers, and particle deposition frac- tions. The orientations of deposited fibers were obtained from micrographs. Specifically, the effects of the sedimentation parameter (γ), fiber length, and flow rate on orientations were analyzed. Our results indicate that gravitational effect on deposition cannot be neglected for 0.0228 〈 γ 〈 0.247. The absolute orientation angle of depositing fibers decreased linearly with increasing y for values 0.0228 〈 γ 〈 0.15. Correspondence between Stokes numbers and y suggests these characteristics can be used to estimate fiber deposition in the lower airways. Computer simulations with sphere-equivalent diameter models for the fibers explored deposition efficiency vs. Stokes number. Using the volume-equivalent diameter model, our experimental data for the horizontal bifurcation were replicated. Results for particle deposition using a lung model with a vertical bifurcation indicate that body position also affects deposition.
文摘Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra costs to manage risk factors. In this article, we demonstrate that continuous monolayer graphene can be synthesized via chemical vapor deposition technique on Cu foils using industrially safe gas mixtures. Important factors, including the appropriate ratio of hydrogen flow and carbon precursor,pressure, and growth time are considered to obtain graphene films. Optical measurements and electrical transport measurements indicate graphene films are with comparable quality to other reports. Such continuous large area graphene can be synthesized under non-flammable and non-explosive conditions, which opens a safe and economical method for mass production of graphene. It is thereby beneficial for integration of graphene into semiconductor electronics.