期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Monocular Depth Estimation with Sharp Boundary
1
作者 Xin Yang Qingling Chang +2 位作者 Shiting Xu Xinlin Liu Yan Cui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期573-592,共20页
Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious pro... Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious problem.Researchers find that the blurry boundary is mainly caused by two factors.First,the low-level features,containing boundary and structure information,may be lost in deep networks during the convolution process.Second,themodel ignores the errors introduced by the boundary area due to the few portions of the boundary area in the whole area,during the backpropagation.Focusing on the factors mentioned above.Two countermeasures are proposed to mitigate the boundary blur problem.Firstly,we design a scene understanding module and scale transformmodule to build a lightweight fuse feature pyramid,which can deal with low-level feature loss effectively.Secondly,we propose a boundary-aware depth loss function to pay attention to the effects of the boundary’s depth value.Extensive experiments show that our method can predict the depth maps with clearer boundaries,and the performance of the depth accuracy based on NYU-Depth V2,SUN RGB-D,and iBims-1 are competitive. 展开更多
关键词 Monocular depth estimation object boundary blurry boundary scene global information feature fusion scale transform boundary aware
下载PDF
A Simple Method for Source Depth Estimation with Multi-path Time Delay in Deep Ocean 被引量:2
2
作者 杨坤德 杨秋龙 +1 位作者 郭晓乐 曹然 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期86-90,共5页
A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay ... A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments. 展开更多
关键词 of on with A Simple Method for Source depth estimation with Multi-path Time Delay in Deep Ocean for in IS SOURCE
下载PDF
Fault depth estimation using support vector classifier and features selection
3
作者 Mohammad Ehsan Hekmatian Vahid E. Ardestani +2 位作者 Mohammad Ali Riahi Ayyub Memar Koucheh Bagh Jalal Amini 《Applied Geophysics》 SCIE CSCD 2013年第1期88-96,119,共10页
Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, de... Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data. 展开更多
关键词 depth estimation subsurface fault support vector classifier FEATURE featuresselection
下载PDF
Depth estimation system suitable for hardware design
4
作者 李贺建 左一帆 +3 位作者 杨高波 安平 王建伟 滕国伟 《Journal of Shanghai University(English Edition)》 CAS 2011年第4期325-330,共6页
Depth estimation is an active research area with the developing of stereo vision in recent years. It is one of the key technologies to resolve the large data of stereo vision communication. Now depth estimation still ... Depth estimation is an active research area with the developing of stereo vision in recent years. It is one of the key technologies to resolve the large data of stereo vision communication. Now depth estimation still has some problems, such as occlusion, fuzzy edge, real-time processing, etc. Many algorithms have been proposed base on software, however the performance of the computer configurations limits the software processing speed. The other resolution is hardware design and the great developments of the digital signal processor (DSP), and application specific integrated circuit (ASIC) and field programmable gate array (FPGA) provide the opportunity of flexible applications. In this work, by analyzing the procedures of depth estimation, the proper algorithms which can be used in hardware design to execute real-time depth estimation are proposed. The different methods of calibration, matching and post-processing are analyzed based on the hardware design requirements. At last some tests for the algorithm have been analyzed. The results show that the algorithms proposed for hardware design can provide credited depth map for further view synthesis and are suitable for hardware design. 展开更多
关键词 3-D TV (3DTV) depth estimation hardware design rank transform census transform
下载PDF
Boosting Unsupervised Monocular Depth Estimation with Auxiliary Semantic Information
5
作者 Hui Ren Nan Gao Jia Li 《China Communications》 SCIE CSCD 2021年第6期228-243,共16页
Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupe... Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupervised monocular depth estimation using semantic segmentation as an auxiliary task.To address the lack of cross-domain datasets and catastrophic forgetting problems encountered in multi-task training,we utilize existing methodology to obtain redundant segmentation maps to build our cross-domain dataset,which not only provides a new way to conduct multi-task training,but also helps us to evaluate results compared with those of other algorithms.In addition,in order to comprehensively use the extracted features of the two tasks in the early perception stage,we use a strategy of sharing weights in the network to fuse cross-domain features,and introduce a novel multi-task loss function to further smooth the depth values.Extensive experiments on KITTI and Cityscapes datasets show that our method has achieved state-of-the-art performance in the depth estimation task,as well improved semantic segmentation. 展开更多
关键词 unsupervised monocular depth estimation semantic segmentation multi-task model
下载PDF
A method to generate foggy optical images based on unsupervised depth estimation
6
作者 WANG Xiangjun LIU Linghao +1 位作者 NI Yubo WANG Lin 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期44-52,共9页
For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the ... For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the object characteristics in the foggy environment in the training set,and the detection effect is not good.To improve the traffic object detection in foggy environment,we propose a method of generating foggy images on fog-free images from the perspective of data set construction.First,taking the KITTI objection detection data set as an original fog-free image,we generate the depth image of the original image by using improved Monodepth unsupervised depth estimation method.Then,a geometric prior depth template is constructed to fuse the image entropy taken as weight with the depth image.After that,a foggy image is acquired from the depth image based on the atmospheric scattering model.Finally,we take two typical object-detection frameworks,that is,the two-stage object-detection Fster region-based convolutional neural network(Faster-RCNN)and the one-stage object-detection network YOLOv4,to train the original data set,the foggy data set and the mixed data set,respectively.According to the test results on RESIDE-RTTS data set in the outdoor natural foggy environment,the model under the training on the mixed data set shows the best effect.The mean average precision(mAP)values are increased by 5.6%and by 5.0%under the YOLOv4 model and the Faster-RCNN network,respectively.It is proved that the proposed method can effectively improve object identification ability foggy environment. 展开更多
关键词 traffic object detection foggy images generation unsupervised depth estimation YOLOv4 model Faster region-based convolutional neural network(Faster-RCNN)
下载PDF
Depth Estimation from a Single Image Based on Cauchy Distribution Model
7
作者 Ying Ming 《Journal of Computer and Communications》 2021年第3期133-142,共10页
Most approaches to estimate a scene’s 3D depth from a single image often model the point spread function (PSF) as a 2D Gaussian function. However, those method<span>s</span><span> are suffered ... Most approaches to estimate a scene’s 3D depth from a single image often model the point spread function (PSF) as a 2D Gaussian function. However, those method<span>s</span><span> are suffered from some noises, and difficult to get a high quality of depth recovery. We presented a simple yet effective approach to estimate exactly the amount of spatially varying defocus blur at edges, based on </span><span>a</span><span> Cauchy distribution model for the PSF. The raw image was re-blurred twice using two known Cauchy distribution kernels, and the defocus blur amount at edges could be derived from the gradient ratio between the two re-blurred images. By propagating the blur amount at edge locations to the entire image using the matting interpolation, a full depth map was then recovered. Experimental results on several real images demonstrated both feasibility and effectiveness of our method, being a non-Gaussian model for DSF, in providing a better estimation of the defocus map from a single un-calibrated defocused image. These results also showed that our method </span><span>was</span><span> robust to image noises, inaccurate edge location and interferences of neighboring edges. It could generate more accurate scene depth maps than the most of existing methods using a Gaussian based DSF model.</span> 展开更多
关键词 depth estimation depth From Defocus Defocus Blur Gaussian Gradient Cauchy Distribution Point Spread Function (PSF)
下载PDF
RADepthNet:Reflectance-aware monocular depth estimation
8
作者 Chuxuan LI Ran YI +5 位作者 Saba Ghazanfar ALI Lizhuang MA Enhua WU Jihong WANG Lijuan MAO Bin SHENG 《Virtual Reality & Intelligent Hardware》 2022年第5期418-431,共14页
Background Monocular depth estimation aims to predict a dense depth map from a single RGB image,and has important applications in 3D reconstruction,automatic driving,and augmented reality.However,existing methods dire... Background Monocular depth estimation aims to predict a dense depth map from a single RGB image,and has important applications in 3D reconstruction,automatic driving,and augmented reality.However,existing methods directly feed the original RGB image into the model to extract depth features without avoiding the interference of depth-irrelevant information on depth-estimation accuracy,which leads to inferior performance.Methods To remove the influence of depth-irrelevant information and improve the depth-prediction accuracy,we propose RADepthNet,a novel reflectance-guided network that fuses boundary features.Specifically,our method predicts depth maps using the following three steps:(1)Intrinsic Image Decomposition.We propose a reflectance extraction module consisting of an encoder-decoder structure to extract the depth-related reflectance.Through an ablation study,we demonstrate that the module can reduce the influence of illumination on depth estimation.(2)Boundary Detection.A boundary extraction module,consisting of an encoder,refinement block,and upsample block,was proposed to better predict the depth at object boundaries utilizing gradient constraints.(3)Depth Prediction Module.We use an encoder different from(2)to obtain depth features from the reflectance map and fuse boundary features to predict depth.In addition,we proposed FIFADataset,a depth-estimation dataset applied in soccer scenarios.Results Extensive experiments on a public dataset and our proposed FIFADataset show that our method achieves state-of-the-art performance. 展开更多
关键词 Monocular depth estimation Deep learning Intrinsic image decomposition
下载PDF
On Robust Cross-view Consistency in Self-supervised Monocular Depth Estimation
9
作者 Haimei Zhao Jing Zhang +2 位作者 Zhuo Chen Bo Yuan Dacheng Tao 《Machine Intelligence Research》 EI CSCD 2024年第3期495-513,共19页
Remarkable progress has been made in self-supervised monocular depth estimation (SS-MDE) by exploring cross-view consistency, e.g., photometric consistency and 3D point cloud consistency. However, they are very vulner... Remarkable progress has been made in self-supervised monocular depth estimation (SS-MDE) by exploring cross-view consistency, e.g., photometric consistency and 3D point cloud consistency. However, they are very vulnerable to illumination variance, occlusions, texture-less regions, as well as moving objects, making them not robust enough to deal with various scenes. To address this challenge, we study two kinds of robust cross-view consistency in this paper. Firstly, the spatial offset field between adjacent frames is obtained by reconstructing the reference frame from its neighbors via deformable alignment, which is used to align the temporal depth features via a depth feature alignment (DFA) loss. Secondly, the 3D point clouds of each reference frame and its nearby frames are calculated and transformed into voxel space, where the point density in each voxel is calculated and aligned via a voxel density alignment (VDA) loss. In this way, we exploit the temporal coherence in both depth feature space and 3D voxel space for SS-MDE, shifting the “point-to-point” alignment paradigm to the “region-to-region” one. Compared with the photometric consistency loss as well as the rigid point cloud alignment loss, the proposed DFA and VDA losses are more robust owing to the strong representation power of deep features as well as the high tolerance of voxel density to the aforementioned challenges. Experimental results on several outdoor benchmarks show that our method outperforms current state-of-the-art techniques. Extensive ablation study and analysis validate the effectiveness of the proposed losses, especially in challenging scenes. The code and models are available at https://github.com/sunnyHelen/RCVC-depth. 展开更多
关键词 3D vision depth estimation cross-view consistency self-supervised learning monocular perception
原文传递
Light field depth estimation:A comprehensive survey from principles to future
10
作者 Tun Wang Hao Sheng +5 位作者 Rongshan Chen Da Yang Zhenglong Cui Sizhe Wang Ruixuan Cong Mingyuan Zhao 《High-Confidence Computing》 EI 2024年第1期92-107,共16页
Light Field(LF)depth estimation is an important research direction in the area of computer vision and computational photography,which aims to infer the depth information of different objects in threedimensional scenes... Light Field(LF)depth estimation is an important research direction in the area of computer vision and computational photography,which aims to infer the depth information of different objects in threedimensional scenes by capturing LF data.Given this new era of significance,this article introduces a survey of the key concepts,methods,novel applications,and future trends in this area.We summarize the LF depth estimation methods,which are usually based on the interaction of radiance from rays in all directions of the LF data,such as epipolar-plane,multi-view geometry,focal stack,and deep learning.We analyze the many challenges facing each of these approaches,including complex algorithms,large amounts of computation,and speed requirements.In addition,this survey summarizes most of the currently available methods,conducts some comparative experiments,discusses the results,and investigates the novel directions in LF depth estimation. 展开更多
关键词 Light field depth estimation Deep learning Sub-aperture image Epipolar-plane image
原文传递
DepthFormer:Exploiting Long-range Correlation and Local Information for Accurate Monocular Depth Estimation 被引量:1
11
作者 Zhenyu Li Zehui Chen +1 位作者 Xianming Liu Junjun Jiang 《Machine Intelligence Research》 EI CSCD 2023年第6期837-854,共18页
This paper aims to address the problem of supervised monocular depth estimation.We start with a meticulous pilot study to demonstrate that the long-range correlation is essential for accurate depth estimation.Moreover... This paper aims to address the problem of supervised monocular depth estimation.We start with a meticulous pilot study to demonstrate that the long-range correlation is essential for accurate depth estimation.Moreover,the Transformer and convolution are good at long-range and close-range depth estimation,respectively.Therefore,we propose to adopt a parallel encoder architecture consisting of a Transformer branch and a convolution branch.The former can model global context with the effective attention mechanism and the latter aims to preserve the local information as the Transformer lacks the spatial inductive bias in modeling such contents.However,independent branches lead to a shortage of connections between features.To bridge this gap,we design a hierarchical aggregation and heterogeneous interaction module to enhance the Transformer features and model the affinity between the heterogeneous features in a set-to-set translation manner.Due to the unbearable memory cost introduced by the global attention on high-resolution feature maps,we adopt the deformable scheme to reduce the complexity.Extensive experiments on the KITTI,NYU,and SUN RGB-D datasets demonstrate that our proposed model,termed DepthFormer,surpasses state-of-the-art monocular depth estimation methods with prominent margins.The effectiveness of each proposed module is elaborately evaluated through meticulous and intensive ablation studies. 展开更多
关键词 Autonomous driving 3D reconstruction monocular depth estimation TRANSFORMER CONVOLUTION
原文传递
ArthroNet:a monocular depth estimation technique with 3D segmented maps for knee arthroscopy 被引量:1
12
作者 Shahnewaz Ali Ajay K.Pandey 《Intelligent Medicine》 CSCD 2023年第2期129-138,共10页
Background Lack of depth perception from medical imaging systems is one of the long-standing technological limitations of minimally invasive surgeries.The ability to visualize anatomical structures in 3D can improve c... Background Lack of depth perception from medical imaging systems is one of the long-standing technological limitations of minimally invasive surgeries.The ability to visualize anatomical structures in 3D can improve conventional arthroscopic surgeries,as a full 3D semantic representation of the surgical site can directly improve surgeons’ability.It also brings the possibility of intraoperative image registration with preoperative clinical records for the development of semi-autonomous,and fully autonomous platforms.This study aimed to present a novel monocular depth prediction model to infer depth maps from a single-color arthroscopic video frame.Methods We applied a novel technique that provides the ability to combine both supervised and self-supervised loss terms and thus eliminate the drawback of each technique.It enabled the estimation of edge-preserving depth maps from a single untextured arthroscopic frame.The proposed image acquisition technique projected artificial textures on the surface to improve the quality of disparity maps from stereo images.Moreover,following the integration of the attention-ware multi-scale feature extraction technique along with scene global contextual constraints and multiscale depth fusion,the model could predict reliable and accurate tissue depth of the surgical sites that complies with scene geometry.Results A total of 4,128 stereo frames from a knee phantom were used to train a network,and during the pre-trained stage,the network learned disparity maps from the stereo images.The fine-tuned training phase uses 12,695 knee arthroscopic stereo frames from cadaver experiments along with their corresponding coarse disparity maps obtained from the stereo matching technique.In a supervised fashion,the network learns the left image to the disparity map transformation process,whereas the self-supervised loss term refines the coarse depth map by minimizing reprojection,gradients,and structural dissimilarity loss.Together,our method produces high-quality 3D maps with minimum re-projection loss that are 0.0004132(structural similarity index),0.00036120156(L1 error distance)and 6.591908×10^(−5)(L1 gradient error distance).Conclusion Machine learning techniques for monocular depth prediction is studied to infer accurate depth maps from a single-color arthroscopic video frame.Moreover,the study integrates segmentation model hence,3D segmented maps are inferred that provides extended perception ability and tissue awareness. 展开更多
关键词 Monocular depth estimation technique 3D segmented maps Knee arthroscopic
原文传递
Self-Supervised Monocular Depth Estimation by Digging into Uncertainty Quantification
13
作者 李远珍 郑圣杰 +3 位作者 谭梓欣 曹拓 罗飞 肖春霞 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第3期510-525,共16页
Based on well-designed network architectures and objective functions,self-supervised monocular depth estimation has made great progress.However,lacking a specific mechanism to make the network learn more about the reg... Based on well-designed network architectures and objective functions,self-supervised monocular depth estimation has made great progress.However,lacking a specific mechanism to make the network learn more about the regions containing moving objects or occlusion scenarios,existing depth estimation methods likely produce poor results for them.Therefore,we propose an uncertainty quantification method to improve the performance of existing depth estimation networks without changing their architectures.Our uncertainty quantification method consists of uncertainty measurement,the learning guidance by uncertainty,and the ultimate adaptive determination.Firstly,with Snapshot and Siam learning strategies,we measure the uncertainty degree by calculating the variance of pre-converged epochs or twins during training.Secondly,we use the uncertainty to guide the network to strengthen learning about those regions with more uncertainty.Finally,we use the uncertainty to adaptively produce the final depth estimation results with a balance of accuracy and robustness.To demonstrate the effectiveness of our uncertainty quantification method,we apply it to two state-of-the-art models,Monodepth2 and Hints.Experimental results show that our method has improved the depth estimation performance in seven evaluation metrics compared with two baseline models and exceeded the existing uncertainty method. 展开更多
关键词 self-supervised monocular depth estimation uncertainty quantification variance
原文传递
Depth Estimation Based on Monocular Camera Sensors in Autonomous Vehicles: A Self‑supervised Learning Approach
14
作者 Guofa Li Xingyu Chi Xingda Qu 《Automotive Innovation》 EI CSCD 2023年第2期268-280,共13页
Estimating depth from images captured by camera sensors is crucial for the advancement of autonomous driving technologies and has gained significant attention in recent years.However,most previous methods rely on stac... Estimating depth from images captured by camera sensors is crucial for the advancement of autonomous driving technologies and has gained significant attention in recent years.However,most previous methods rely on stacked pooling or stride convolution to extract high-level features,which can limit network performance and lead to information redundancy.This paper proposes an improved bidirectional feature pyramid module(BiFPN)and a channel attention module(Seblock:squeeze and excitation)to address these issues in existing methods based on monocular camera sensor.The Seblock redistributes channel feature weights to enhance useful information,while the improved BiFPN facilitates efficient fusion of multi-scale features.The proposed method is in an end-to-end solution without any additional post-processing,resulting in efficient depth estimation.Experiment results show that the proposed method is competitive with state-of-the-art algorithms and preserves fine-grained texture of scene depth. 展开更多
关键词 Autonomous vehicle Camera sensor Deep learning depth estimation Self-supervised
原文传递
Perpendicular-Cutdepth:Perpendicular Direction Depth Cutting Data Augmentation Method
15
作者 Le Zou Linsong Hu +2 位作者 Yifan Wang Zhize Wu Xiaofeng Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期927-941,共15页
Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore... Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore,data augmentation is crucial for this task.Existing data augmentationmethods often employ pixel-wise transformations,whichmay inadvertently disrupt edge features.In this paper,we propose a data augmentationmethod formonocular depth estimation,which we refer to as the Perpendicular-Cutdepth method.This method involves cutting realworld depth maps along perpendicular directions and pasting them onto input images,thereby diversifying the data without compromising edge features.To validate the effectiveness of the algorithm,we compared it with existing convolutional neural network(CNN)against the current mainstream data augmentation algorithms.Additionally,to verify the algorithm’s applicability to Transformer networks,we designed an encoder-decoder network structure based on Transformer to assess the generalization of our proposed algorithm.Experimental results demonstrate that,in the field of monocular depth estimation,our proposed method,Perpendicular-Cutdepth,outperforms traditional data augmentationmethods.On the indoor dataset NYU,our method increases accuracy from0.900 to 0.907 and reduces the error rate from0.357 to 0.351.On the outdoor dataset KITTI,our method improves accuracy from 0.9638 to 0.9642 and decreases the error rate from 0.060 to 0.0598. 展开更多
关键词 PERPENDICULAR depth estimation data augmentation
下载PDF
Monocular depth estimation based on deep learning: An overview 被引量:23
16
作者 ZHAO ChaoQiang SUN QiYu +2 位作者 ZHANG ChongZhen TANG Yang QIAN Feng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第9期1612-1627,共16页
Depth information is important for autonomous systems to perceive environments and estimate their own state. Traditional depth estimation methods, like structure from motion and stereo vision matching, are built on fe... Depth information is important for autonomous systems to perceive environments and estimate their own state. Traditional depth estimation methods, like structure from motion and stereo vision matching, are built on feature correspondences of multiple viewpoints. Meanwhile, the predicted depth maps are sparse. Inferring depth information from a single image(monocular depth estimation) is an ill-posed problem. With the rapid development of deep neural networks, monocular depth estimation based on deep learning has been widely studied recently and achieved promising performance in accuracy. Meanwhile, dense depth maps are estimated from single images by deep neural networks in an end-to-end manner. In order to improve the accuracy of depth estimation, different kinds of network frameworks, loss functions and training strategies are proposed subsequently. Therefore, we survey the current monocular depth estimation methods based on deep learning in this review. Initially, we conclude several widely used datasets and evaluation indicators in deep learning-based depth estimation. Furthermore, we review some representative existing methods according to different training manners: supervised, unsupervised and semi-supervised. Finally, we discuss the challenges and provide some ideas for future researches in monocular depth estimation. 展开更多
关键词 autonomous systems monocular depth estimation deep learning unsupervised learning
原文传递
Semisupervised learning-based depth estimation with semantic inference guidance 被引量:1
17
作者 ZHANG Yan FAN XiaoPeng ZHAO DeBin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第5期1098-1106,共9页
Depth estimation is a fundamental computer vision problem that infers three-dimensional(3D)structures from a given scene.As it is an ill-posed problem,to fit the projection function from the given scene to the 3D stru... Depth estimation is a fundamental computer vision problem that infers three-dimensional(3D)structures from a given scene.As it is an ill-posed problem,to fit the projection function from the given scene to the 3D structure,traditional methods generally require mass amounts of annotated data.Such pixel-level annotation is quite labor consuming,especially when addressing reflective surfaces such as mirrors or water.The widespread application of deep learning further intensifies the demand for large amounts of annotated data.Therefore,it is urgent and necessary to propose a framework that is able to reduce the requirement on the amount of data.In this paper,we propose a novel semisupervised learning framework to infer the 3D structure from the given scene.First,semantic information is employed to make the depth inference more accurate.Second,we make both the depth estimation and semantic segmentation coarse-to-fine frameworks;thus,the depth estimation can be gradually guided by semantic segmentation.We compare our model with state-of-the-art methods.The experimental results demonstrate that our method is better than many supervised learning-based methods,which proves the effectiveness of the proposed method. 展开更多
关键词 depth estimation semisupervised learning semantic information neural networks
原文传递
Geophysical Study: Estimation of Deposit Depth Using Gravimetric Data and Euler Method (Jalalabad Iron Mine, Kerman Province of IRAN) 被引量:5
18
作者 Adel Shirazy Aref Shirazi +2 位作者 Hamed Nazerian Keyvan Khayer Ardeshir Hezarkhani 《Open Journal of Geology》 2021年第8期340-355,共16页
Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the dr... Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the drilling boreholes. The purpose of this study is to use field geophysics to calculate the depth of mineral reserve. The study area is located 38 km from Zarand city called Jalalabad iron mine. In this study, gravimetric data were measured and mineral depth was calculated using the Euler method. 1314 readings have been performed in this area. The rocks of the region include volcanic and sedimentary. The source of the mineralization in the area is hydrothermal processes. After gravity measuring in the region, the data were corrected, then various methods such as anomalous map remaining in levels one and two, upward expansion, first and second-degree vertical derivatives, analytical method, and analytical signal were drawn, and finally, the depth of the deposit was estimated by Euler method. As a result, the depth of the mineral deposit was calculated to be between 20 and 30 meters on average. 展开更多
关键词 Geophysical Study depth estimation Gravimetric Data Euler Method Jalalabad Iron Mine
下载PDF
Temporally Consistent Depth Map Estimation for 3D Video Generation and Coding 被引量:2
19
作者 Sang-Beom Lee Yo-Sung Ho 《China Communications》 SCIE CSCD 2013年第5期39-49,共11页
In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting fun... In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding. 展开更多
关键词 three-dimensional television multiview video depth estimation temporal consistency temporal weighting function
下载PDF
Self-supervised coarse-to-fine monocular depth estimation using a lightweight attention module
20
作者 Yuanzhen Li Fei Luo Chunxia Xiao 《Computational Visual Media》 SCIE EI CSCD 2022年第4期631-647,共17页
Self-supervised monocular depth estimation has been widely investigated and applied in previous works.However,existing methods suffer from texture-copy,depth drift,and incomplete structure.It is difficult for normal C... Self-supervised monocular depth estimation has been widely investigated and applied in previous works.However,existing methods suffer from texture-copy,depth drift,and incomplete structure.It is difficult for normal CNN networks to completely understand the relationship between the object and its surrounding environment.Moreover,it is hard to design the depth smoothness loss to balance depth smoothness and sharpness.To address these issues,we propose a coarse-to-fine method with a normalized convolutional block attention module(NCBAM).In the coarse estimation stage,we incorporate the NCBAM into depth and pose networks to overcome the texture-copy and depth drift problems.Then,we use a new network to refine the coarse depth guided by the color image and produce a structure-preserving depth result in the refinement stage.Our method can produce results competitive with state-of-the-art methods.Comprehensive experiments prove the effectiveness of our two-stage method using the NCBAM. 展开更多
关键词 monocular depth estimation texture copy depth drift attention module
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部