Compound section is referred to a section the surface of which is made of several sub-sections with different flow characteristics. The difference in the hydraulic and geometry characteristics causes a complexity in f...Compound section is referred to a section the surface of which is made of several sub-sections with different flow characteristics. The difference in the hydraulic and geometry characteristics causes a complexity in flow hydraulic and creates an interaction between the main channel and floodplains, resulting in an apparent shear stress and a transverse momentum transfer. The amount of such a stress plays an important role in many river engineering measures [1]. Due to the flow complexity, the common approximate analytical methods are not enough to identify the flow profile. The FLOW3D Software with its great features in three-dimensional analysis of flow field is used as a tool to investigate the shear stress in a direct symmetrical compound rectangular channel. After the simulation of models, it is found that an increase in the relative width and relative depth parameters decreases the percentage of apparent shear stress and an increase in the relative roughness causes it to be increased [2].展开更多
This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimens...This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures.展开更多
文摘Compound section is referred to a section the surface of which is made of several sub-sections with different flow characteristics. The difference in the hydraulic and geometry characteristics causes a complexity in flow hydraulic and creates an interaction between the main channel and floodplains, resulting in an apparent shear stress and a transverse momentum transfer. The amount of such a stress plays an important role in many river engineering measures [1]. Due to the flow complexity, the common approximate analytical methods are not enough to identify the flow profile. The FLOW3D Software with its great features in three-dimensional analysis of flow field is used as a tool to investigate the shear stress in a direct symmetrical compound rectangular channel. After the simulation of models, it is found that an increase in the relative width and relative depth parameters decreases the percentage of apparent shear stress and an increase in the relative roughness causes it to be increased [2].
基金National Key R&D Program of China under Grant No.2016YFC0701108the State Key Program of National Natural Science Foundation of China under Grant No.51738007
文摘This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures.