The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth...The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain.展开更多
A method for reconstructing crustal velocity structure using the optimization of stacking receiver function amplitude in the depth domain,named common conversion amplitude(CCA)inversion,is presented.The conversion amp...A method for reconstructing crustal velocity structure using the optimization of stacking receiver function amplitude in the depth domain,named common conversion amplitude(CCA)inversion,is presented.The conversion amplitude in the depth domain,which represents the impedance change in the medium,is obtained by assigning the receiver function amplitude to the corresponding conversion position where the P-to-S conversion occurred.Utilizing the conversion amplitude variation with depth as an optimization objective,imposing reliable prior constraints on the structural model frame and velocity range,and adopting a stepwise search inversion technique,this method efficiently weakens the tendency of easily falling into the local extremum in conventional receiver function inversion.Synthetic tests show that the CCA inversion can reconstruct complex crustal velocity structures well and is especially suitable for revealing crustal evolution by estimating diverse velocity distributions.Its performance in reconstructing crustal structure is superior to that of the conventional receiver function imaging method.展开更多
The extensive use of depth-imaged seismic data produced by pre-stack depth migration(PSDM)leads to the necessity to synthesize seismogram directly in depth domain.However,since seismic wavelet in depth domain is depen...The extensive use of depth-imaged seismic data produced by pre-stack depth migration(PSDM)leads to the necessity to synthesize seismogram directly in depth domain.However,since seismic wavelet in depth domain is dependent on media velocities.The time-domain convolution operation directly used in depth domain does not meet the linear time-invariant condition.In this paper,we present a new method for genuine depth-domain seismic synthesis.This method constructs the velocity-dependent seismic wavelets varying adaptively with the corresponding interval velocities in the depth direction and weights them by the reflectivities,then the synthetic seismic record is obtained by the superposition of these weighted depth-varying wavelets.We applied this method to synthesize the seismic record of both a multi-layered geological model and the field data.The results show that the method can accommodate the intrinsic velocity-dependent variation characteristics of seismic events in depth domain and avoid the redundant depth-to-time and time-to-depth transformations.展开更多
For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of...For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.展开更多
In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a G...In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a Gaussian beam. In order to analyse the influence theoretically, a finite-difference time-domain (FDTD) numerical algorithm is adopted for the computational numerical calculation and the design of the plasmonic structure. The structure is flanked with penetrated slits through a 200-nm metal film (Au) which is coated on a quartz substrate. Tunability of focusing capability of the plasmonic lenses is studied by tailoring the ratio. Our calculation results demonstrate that the ratio of the elliptical slits greatly affects the focusing capability of the lense. The plasmonic lenses with concentric elliptical slits illuminating under a Gaussian beam have ultra-elongated depth of focus. These results are very encouraging for the future study of the plasmonic lens-based applications.展开更多
基金supported by the National Natural Science Foundation of China(No.41574130,41874143 and 41374134)the National Science and Technology Major Project of China(No.2016ZX05014-001-009)the Sichuan Provincial Youth Science&Technology Innovative Research Group Fund(No.2016TD0023)
文摘The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain.
基金financially supported by the National Natural Science Foundation of China(Grant 91755214).
文摘A method for reconstructing crustal velocity structure using the optimization of stacking receiver function amplitude in the depth domain,named common conversion amplitude(CCA)inversion,is presented.The conversion amplitude in the depth domain,which represents the impedance change in the medium,is obtained by assigning the receiver function amplitude to the corresponding conversion position where the P-to-S conversion occurred.Utilizing the conversion amplitude variation with depth as an optimization objective,imposing reliable prior constraints on the structural model frame and velocity range,and adopting a stepwise search inversion technique,this method efficiently weakens the tendency of easily falling into the local extremum in conventional receiver function inversion.Synthetic tests show that the CCA inversion can reconstruct complex crustal velocity structures well and is especially suitable for revealing crustal evolution by estimating diverse velocity distributions.Its performance in reconstructing crustal structure is superior to that of the conventional receiver function imaging method.
文摘The extensive use of depth-imaged seismic data produced by pre-stack depth migration(PSDM)leads to the necessity to synthesize seismogram directly in depth domain.However,since seismic wavelet in depth domain is dependent on media velocities.The time-domain convolution operation directly used in depth domain does not meet the linear time-invariant condition.In this paper,we present a new method for genuine depth-domain seismic synthesis.This method constructs the velocity-dependent seismic wavelets varying adaptively with the corresponding interval velocities in the depth direction and weights them by the reflectivities,then the synthetic seismic record is obtained by the superposition of these weighted depth-varying wavelets.We applied this method to synthesize the seismic record of both a multi-layered geological model and the field data.The results show that the method can accommodate the intrinsic velocity-dependent variation characteristics of seismic events in depth domain and avoid the redundant depth-to-time and time-to-depth transformations.
文摘For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010)
文摘In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a Gaussian beam. In order to analyse the influence theoretically, a finite-difference time-domain (FDTD) numerical algorithm is adopted for the computational numerical calculation and the design of the plasmonic structure. The structure is flanked with penetrated slits through a 200-nm metal film (Au) which is coated on a quartz substrate. Tunability of focusing capability of the plasmonic lenses is studied by tailoring the ratio. Our calculation results demonstrate that the ratio of the elliptical slits greatly affects the focusing capability of the lense. The plasmonic lenses with concentric elliptical slits illuminating under a Gaussian beam have ultra-elongated depth of focus. These results are very encouraging for the future study of the plasmonic lens-based applications.