With the global climate change,the high-altitude detection is more and more important in the climate prediction,and the input-output characteristic curve of the air pressure sensor is offset due to the interference of...With the global climate change,the high-altitude detection is more and more important in the climate prediction,and the input-output characteristic curve of the air pressure sensor is offset due to the interference of the tested object and the environment under test,and the nonlinear error is generated.Aiming at the difficulty of nonlinear correction of pressure sensor and the low accuracy of correction results,depth neural network model was established based on wavelet function,and Levenberg-Marquardt algorithm is used to update network parameters to realize the nonlinear correction of pressure sensor.The experimental results show that compared with the traditional neural network model,the improved depth neural network not only accelerates the convergence rate,but also improves the correction accuracy,meets the error requirements of upper-air detection,and has a good generalization ability,which can be extended to the nonlinear correction of similar sensors.展开更多
This paper outlines the application of the multi-layer perceptron artificial neural network (ANN), ordinary kriging (OK), and inverse distance weighting (IDW) models in the estimation of local scour depth around bridg...This paper outlines the application of the multi-layer perceptron artificial neural network (ANN), ordinary kriging (OK), and inverse distance weighting (IDW) models in the estimation of local scour depth around bridge piers. As part of this study, bridge piers were installed with bed sills at the bed of an experimental flume. Experimental tests were conducted under different flow conditions and varying distances between bridge pier and bed sill. The ANN, OK and IDW models were applied to the experimental data and it was shown that the artificial neural network model predicts local scour depth more accurately than the kriging and inverse distance weighting models. It was found that the ANN with two hidden layers was the optimum model to predict local scour depth. The results from the sixth test case showed that the ANN with one hidden layer and 17 hidden nodes was the best model to predict local scour depth. Whereas the results from the fifth test case found that the ANN with three hidden layers was the best model to predict local scour depth.展开更多
An intelligent system including both a neural network(NN) and a self adjusting fuzzy controller(FC) for modeling and control of the penetration depth during gas tungsten arc welding(GTAW) process is presented in this...An intelligent system including both a neural network(NN) and a self adjusting fuzzy controller(FC) for modeling and control of the penetration depth during gas tungsten arc welding(GTAW) process is presented in this paper. The discussion is mainly focused on two parts. One is the modeling of the penetration depth with NN. A visual sensor CCD is used to obtain the image of the molten pool. A neural network model is established to estimate the penetration depth from the welding current, pool width and seam gap. It is demonstrated that the proposed neural network can produce highly complex nonlinear multi variable model of the GTAW process that offer the accurate prediction of welding penetration depth. Another is the control for the penetration depth with FC.A self adjusting fuzzy controller is proposed,which used for controlling the penetration depth.The control parameters are adjusted on line automatically according to the controlling errors of penetration and the errors can be decreased sharply. The effectiveness of the proposed intelligent methods is demonstrated by the real experiments and the improved performance results are obtained.展开更多
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c...An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.展开更多
Aiming at the problem that the average recognition degree of the moving target line is low with the traditional motion target behaviour recognition method, a motion recognition method based on deep convolutional neura...Aiming at the problem that the average recognition degree of the moving target line is low with the traditional motion target behaviour recognition method, a motion recognition method based on deep convolutional neural network is proposed in this paper. A target model of deep convolutional neural network is constructed and the basic unit of the network is designed by using the model. By setting the unit, the returned unit is calculated into the standard density diagram, and the position of the moving target is determined by the local maximum method to realize the behavior identification of the moving target. The experimental results show that the multi-parameter SICNN256 model is slightly better than other model structures. The average recognition rate and recognition rate of the moving target behavior recognition method based on deep convolutional neural network are higher than those of the traditional method, which proves its effectiveness. Since the frequency of single target is higher than that of multiple recognition and there is no target similarity recognition, similar target error detection cannot be excluded.展开更多
针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature...针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature,MSF)提取模块及高效的全局上下文信息融合(efficient global contextual information aggregation,EGCA)模块结合U型分割网络进行动静脉分类,抑制了倾向于背景的特征并增强了血管的边缘、交点和末端特征,解决了段内动静脉错误分类问题。此外,在U型网络的解码器部分加入3层深度监督,使浅层信息得到充分训练,避免梯度消失,优化训练过程。在2个公开的眼底图像数据集(DRIVE-AV,LES-AV)上,与3种现有网络进行方法对比,该模型的F1评分分别提高了2.86、1.92、0.81个百分点,灵敏度分别提高了4.27、2.43、1.21个百分点,结果表明所提出的模型能够很好地解决动静脉分类错误的问题。展开更多
基金This paper is supported by the following funds:National Key R&D Program of China(2018YFF01010100)National natural science foundation of China(61672064),Beijing natural science foundation project(4172001)Advanced information network Beijing laboratory(PXM2019_014204_500029).
文摘With the global climate change,the high-altitude detection is more and more important in the climate prediction,and the input-output characteristic curve of the air pressure sensor is offset due to the interference of the tested object and the environment under test,and the nonlinear error is generated.Aiming at the difficulty of nonlinear correction of pressure sensor and the low accuracy of correction results,depth neural network model was established based on wavelet function,and Levenberg-Marquardt algorithm is used to update network parameters to realize the nonlinear correction of pressure sensor.The experimental results show that compared with the traditional neural network model,the improved depth neural network not only accelerates the convergence rate,but also improves the correction accuracy,meets the error requirements of upper-air detection,and has a good generalization ability,which can be extended to the nonlinear correction of similar sensors.
文摘This paper outlines the application of the multi-layer perceptron artificial neural network (ANN), ordinary kriging (OK), and inverse distance weighting (IDW) models in the estimation of local scour depth around bridge piers. As part of this study, bridge piers were installed with bed sills at the bed of an experimental flume. Experimental tests were conducted under different flow conditions and varying distances between bridge pier and bed sill. The ANN, OK and IDW models were applied to the experimental data and it was shown that the artificial neural network model predicts local scour depth more accurately than the kriging and inverse distance weighting models. It was found that the ANN with two hidden layers was the optimum model to predict local scour depth. The results from the sixth test case showed that the ANN with one hidden layer and 17 hidden nodes was the best model to predict local scour depth. Whereas the results from the fifth test case found that the ANN with three hidden layers was the best model to predict local scour depth.
文摘An intelligent system including both a neural network(NN) and a self adjusting fuzzy controller(FC) for modeling and control of the penetration depth during gas tungsten arc welding(GTAW) process is presented in this paper. The discussion is mainly focused on two parts. One is the modeling of the penetration depth with NN. A visual sensor CCD is used to obtain the image of the molten pool. A neural network model is established to estimate the penetration depth from the welding current, pool width and seam gap. It is demonstrated that the proposed neural network can produce highly complex nonlinear multi variable model of the GTAW process that offer the accurate prediction of welding penetration depth. Another is the control for the penetration depth with FC.A self adjusting fuzzy controller is proposed,which used for controlling the penetration depth.The control parameters are adjusted on line automatically according to the controlling errors of penetration and the errors can be decreased sharply. The effectiveness of the proposed intelligent methods is demonstrated by the real experiments and the improved performance results are obtained.
基金National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
文摘An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.
文摘Aiming at the problem that the average recognition degree of the moving target line is low with the traditional motion target behaviour recognition method, a motion recognition method based on deep convolutional neural network is proposed in this paper. A target model of deep convolutional neural network is constructed and the basic unit of the network is designed by using the model. By setting the unit, the returned unit is calculated into the standard density diagram, and the position of the moving target is determined by the local maximum method to realize the behavior identification of the moving target. The experimental results show that the multi-parameter SICNN256 model is slightly better than other model structures. The average recognition rate and recognition rate of the moving target behavior recognition method based on deep convolutional neural network are higher than those of the traditional method, which proves its effectiveness. Since the frequency of single target is higher than that of multiple recognition and there is no target similarity recognition, similar target error detection cannot be excluded.
文摘针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature,MSF)提取模块及高效的全局上下文信息融合(efficient global contextual information aggregation,EGCA)模块结合U型分割网络进行动静脉分类,抑制了倾向于背景的特征并增强了血管的边缘、交点和末端特征,解决了段内动静脉错误分类问题。此外,在U型网络的解码器部分加入3层深度监督,使浅层信息得到充分训练,避免梯度消失,优化训练过程。在2个公开的眼底图像数据集(DRIVE-AV,LES-AV)上,与3种现有网络进行方法对比,该模型的F1评分分别提高了2.86、1.92、0.81个百分点,灵敏度分别提高了4.27、2.43、1.21个百分点,结果表明所提出的模型能够很好地解决动静脉分类错误的问题。