Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications ...Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications of semantic feature extraction,a key step in the semantic communication,in several areas of artificial intelligence,including natural language processing,medical imaging,remote sensing,autonomous driving,and other image-related applications.Specifically,we discuss how semantic feature extraction can enhance the accuracy and efficiency of natural language processing tasks,such as text classification,sentiment analysis,and topic modeling.In the medical imaging field,we explore how semantic feature extraction can be used for disease diagnosis,drug development,and treatment planning.In addition,we investigate the applications of semantic feature extraction in remote sensing and autonomous driving,where it can facilitate object detection,scene understanding,and other tasks.By providing an overview of the applications of semantic feature extraction in various fields,this paper aims to provide insights into the potential of this technology to advance the development of artificial intelligence.展开更多
We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance...We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance the capability of deep neural networks in extracting geometric attributes from depth images,we developed a novel deep geometric convolution operator(DGConv).DGConv is utilized to construct a deep local geometric feature extraction module,facilitating a more comprehensive exploration of the intrinsic geometric information within depth images.Secondly,we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network(FCN8)to establish a high-performance deep neural network algorithm tailored for depth image segmentation.Concurrently,we enhance the FCN8 detection head by separating the segmentation and classification processes.This enhancement significantly boosts the network’s overall detection capability.Thirdly,for a comprehensive assessment of our proposed algorithm and its applicability in real-world industrial settings,we curated a line-scan image dataset featuring weld seams.This dataset,named the Standardized Linear Depth Profile(SLDP)dataset,was collected from actual industrial sites where autonomous robots are in operation.Ultimately,we conducted experiments utilizing the SLDP dataset,achieving an average accuracy of 92.7%.Our proposed approach exhibited a remarkable performance improvement over the prior method on the identical dataset.Moreover,we have successfully deployed the proposed algorithm in genuine industrial environments,fulfilling the prerequisites of unmanned robot operations.展开更多
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning dis...Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification.展开更多
在基于深度学习的三维点云语义分割算法中,为了加强提取局部特征细粒度能力和学习不同局部邻域之间的长程依赖性,提出一种基于注意力机制和全局特征优化的神经网络。首先,通过加性注意力的形式设计单通道注意力(SCA)模块和点注意力(PA)...在基于深度学习的三维点云语义分割算法中,为了加强提取局部特征细粒度能力和学习不同局部邻域之间的长程依赖性,提出一种基于注意力机制和全局特征优化的神经网络。首先,通过加性注意力的形式设计单通道注意力(SCA)模块和点注意力(PA)模块,前者通过自适应调节单通道中各点特征加强对局部特征的分辨能力,后者通过调节单点特征向量之间的重要程度抑制无用特征并减少特征冗余;其次,加入全局特征聚合(GFA)模块,聚合各局部邻域特征,以捕获全局上下文信息,从而提高语义分割精度。实验结果表明,在点云数据集S3DIS上,所提网络的平均交并比(mIoU)相较于RandLA-Net(Random sampling and an effective Local feature Aggregator Network)提升了1.8个百分点,分割性能良好,具有较好的适应性。展开更多
真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of ...真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of real scene for point cloud semantic segmentation)可用于不同场景下的室内外场景语义分割。更具体地说,为了解决不能充分提取真实场景点云颜色信息的问题,该方法采用上下两个输入通道,通道均采用相同的特征提取网络结构,其中上通道的输入是完整RGB颜色和点云坐标信息,该通道主要关注于复杂物体对象场景特征,下通道仅输入点云坐标信息,该通道主要关注于点云的空间几何特征;在每个通道中为了更好地提取局部与全局信息,改善网络性能,引入了层间融合模块和Transformer通道特征扩充模块;同时,针对现有的三维点云语义分割方法缺乏关注局部特征与全局特征的联系,导致对复杂场景的分割效果不佳的问题,对上下两个通道所提取的特征通过DCFFS(dual-channel feature fusion segmentation)模块进行融合,并对真实场景进行语义分割。对室内复杂场景和大规模室内外场景点云分割基准进行了实验,实验结果表明,提出的DCFNet分割方法在S3DIS Area5室内场景数据集以及STPLS3D室外场景数据集上,平均交并比(MIOU)分别达到71.18%和48.87%,平均准确率(MACC)和整体准确率(OACC)分别达到77.01%与86.91%,实现了真实场景的高精度点云语义分割。展开更多
针对在基于深度学习技术的特征提取网络中,深层次的卷积神经网络提取的特征缺乏低级语义信息的问题,该文提出了语义增强的多视立体视觉方法。首先,提出了一种ConvLSTM(Convolutional Long Short-Term Memory)语义聚合网络,通过使用ConvL...针对在基于深度学习技术的特征提取网络中,深层次的卷积神经网络提取的特征缺乏低级语义信息的问题,该文提出了语义增强的多视立体视觉方法。首先,提出了一种ConvLSTM(Convolutional Long Short-Term Memory)语义聚合网络,通过使用ConvLSTM网络结构,对多个卷积层提取的特征图进行预测,得到融合每层语义信息的特征图,有助于在空间上层层抽取图像的高级特征时,利用长短期记忆神经网络结构的记忆功能来增强高层特征图中的低级语义信息,提高了弱纹理区域的重建效果,提高了3D重建的鲁棒性和完整性;其次,提出了一种可见性网络,在灰度图的基础上,通过突出特征图上可见区域的特征,加深了可见区域在特征图中的影响,有助于提高三维重建效果;最后,提取图像的纹理信息,并进入ConvLSTM语义聚合网络提取深层次特征,提高了弱纹理区域的重建效果。与主流的多视立体视觉重建方法相比,重建效果较好。展开更多
文摘Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications of semantic feature extraction,a key step in the semantic communication,in several areas of artificial intelligence,including natural language processing,medical imaging,remote sensing,autonomous driving,and other image-related applications.Specifically,we discuss how semantic feature extraction can enhance the accuracy and efficiency of natural language processing tasks,such as text classification,sentiment analysis,and topic modeling.In the medical imaging field,we explore how semantic feature extraction can be used for disease diagnosis,drug development,and treatment planning.In addition,we investigate the applications of semantic feature extraction in remote sensing and autonomous driving,where it can facilitate object detection,scene understanding,and other tasks.By providing an overview of the applications of semantic feature extraction in various fields,this paper aims to provide insights into the potential of this technology to advance the development of artificial intelligence.
基金This work was supported by the National Natural Science Foundation of China(Grant No.U20A20197).
文摘We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance the capability of deep neural networks in extracting geometric attributes from depth images,we developed a novel deep geometric convolution operator(DGConv).DGConv is utilized to construct a deep local geometric feature extraction module,facilitating a more comprehensive exploration of the intrinsic geometric information within depth images.Secondly,we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network(FCN8)to establish a high-performance deep neural network algorithm tailored for depth image segmentation.Concurrently,we enhance the FCN8 detection head by separating the segmentation and classification processes.This enhancement significantly boosts the network’s overall detection capability.Thirdly,for a comprehensive assessment of our proposed algorithm and its applicability in real-world industrial settings,we curated a line-scan image dataset featuring weld seams.This dataset,named the Standardized Linear Depth Profile(SLDP)dataset,was collected from actual industrial sites where autonomous robots are in operation.Ultimately,we conducted experiments utilizing the SLDP dataset,achieving an average accuracy of 92.7%.Our proposed approach exhibited a remarkable performance improvement over the prior method on the identical dataset.Moreover,we have successfully deployed the proposed algorithm in genuine industrial environments,fulfilling the prerequisites of unmanned robot operations.
基金supported by National Basic Research Program of China (973 Program) (No. 2015CB352502)National Nature Science Foundation of China (No. 61573026)Beijing Nature Science Foundation (No. L172037)
文摘Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification.
文摘在基于深度学习的三维点云语义分割算法中,为了加强提取局部特征细粒度能力和学习不同局部邻域之间的长程依赖性,提出一种基于注意力机制和全局特征优化的神经网络。首先,通过加性注意力的形式设计单通道注意力(SCA)模块和点注意力(PA)模块,前者通过自适应调节单通道中各点特征加强对局部特征的分辨能力,后者通过调节单点特征向量之间的重要程度抑制无用特征并减少特征冗余;其次,加入全局特征聚合(GFA)模块,聚合各局部邻域特征,以捕获全局上下文信息,从而提高语义分割精度。实验结果表明,在点云数据集S3DIS上,所提网络的平均交并比(mIoU)相较于RandLA-Net(Random sampling and an effective Local feature Aggregator Network)提升了1.8个百分点,分割性能良好,具有较好的适应性。
文摘真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of real scene for point cloud semantic segmentation)可用于不同场景下的室内外场景语义分割。更具体地说,为了解决不能充分提取真实场景点云颜色信息的问题,该方法采用上下两个输入通道,通道均采用相同的特征提取网络结构,其中上通道的输入是完整RGB颜色和点云坐标信息,该通道主要关注于复杂物体对象场景特征,下通道仅输入点云坐标信息,该通道主要关注于点云的空间几何特征;在每个通道中为了更好地提取局部与全局信息,改善网络性能,引入了层间融合模块和Transformer通道特征扩充模块;同时,针对现有的三维点云语义分割方法缺乏关注局部特征与全局特征的联系,导致对复杂场景的分割效果不佳的问题,对上下两个通道所提取的特征通过DCFFS(dual-channel feature fusion segmentation)模块进行融合,并对真实场景进行语义分割。对室内复杂场景和大规模室内外场景点云分割基准进行了实验,实验结果表明,提出的DCFNet分割方法在S3DIS Area5室内场景数据集以及STPLS3D室外场景数据集上,平均交并比(MIOU)分别达到71.18%和48.87%,平均准确率(MACC)和整体准确率(OACC)分别达到77.01%与86.91%,实现了真实场景的高精度点云语义分割。
文摘针对在基于深度学习技术的特征提取网络中,深层次的卷积神经网络提取的特征缺乏低级语义信息的问题,该文提出了语义增强的多视立体视觉方法。首先,提出了一种ConvLSTM(Convolutional Long Short-Term Memory)语义聚合网络,通过使用ConvLSTM网络结构,对多个卷积层提取的特征图进行预测,得到融合每层语义信息的特征图,有助于在空间上层层抽取图像的高级特征时,利用长短期记忆神经网络结构的记忆功能来增强高层特征图中的低级语义信息,提高了弱纹理区域的重建效果,提高了3D重建的鲁棒性和完整性;其次,提出了一种可见性网络,在灰度图的基础上,通过突出特征图上可见区域的特征,加深了可见区域在特征图中的影响,有助于提高三维重建效果;最后,提取图像的纹理信息,并进入ConvLSTM语义聚合网络提取深层次特征,提高了弱纹理区域的重建效果。与主流的多视立体视觉重建方法相比,重建效果较好。