期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
Coal/Gangue Volume Estimation with Convolutional Neural Network and Separation Based on Predicted Volume and Weight
1
作者 Zenglun Guan Murad S.Alfarzaeai +2 位作者 Eryi Hu Taqiaden Alshmeri Wang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第4期279-306,共28页
In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new... In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value. 展开更多
关键词 COAL coal gangue convolutional neural network CNN object classification volume estimation separation system
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
2
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional neural network depthwise Dilated separable convolution Hierarchical Multi-Scale Feature Fusion
下载PDF
MSSTNet:Multi-scale facial videos pulse extraction network based on separable spatiotemporal convolution and dimension separable attention
3
作者 Changchen ZHAO Hongsheng WANG Yuanjing FENG 《Virtual Reality & Intelligent Hardware》 2023年第2期124-141,共18页
Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale regi... Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction. 展开更多
关键词 Remote photoplethysmography Heart rate separable spatiotemporal convolution Dimension separable attention MULTI-SCALE neural network
下载PDF
Automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
4
作者 Guanghua Yi Xinhong Hao +3 位作者 Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期364-373,共10页
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ... Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR. 展开更多
关键词 Automatic modulation recognition Radiation source signals Two-dimensional data matrix Residual neural network depthwise convolution
下载PDF
Probability-Based Channel Pruning for Depthwise Separable Convolutional Networks 被引量:1
5
作者 Han-Li Zhao Kai-Jie Shi +4 位作者 Xiao-Gang Jin Ming-Liang Xu Hui Huang Wang-Long Lu Ying Liu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第3期584-600,共17页
Channel pruning can reduce memory consumption and running time with least performance damage,and is one of the most important techniques in network compression.However,existing channel pruning methods mainly focus on ... Channel pruning can reduce memory consumption and running time with least performance damage,and is one of the most important techniques in network compression.However,existing channel pruning methods mainly focus on the pruning of standard convolutional networks,and they rely intensively on time-consuming fine-tuning to achieve the performance improvement.To this end,we present a novel efficient probability-based channel pruning method for depthwise separable convolutional networks.Our method leverages a new simple yet effective probability-based channel pruning criterion by taking the scaling and shifting factors of batch normalization layers into consideration.A novel shifting factor fusion technique is further developed to improve the performance of the pruned networks without requiring extra time-consuming fine-tuning.We apply the proposed method to five representative deep learning networks,namely MobileNetV1,MobileNetV2,ShuffleNetV1,ShuffleNetV2,and GhostNet,to demonstrate the efficiency of our pruning method.Extensive experimental results and comparisons on publicly available CIFAR10,CIFAR100,and ImageNet datasets validate the feasibility of the proposed method. 展开更多
关键词 network compression channel pruning depthwise separable convolution batch normalization
原文传递
Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
6
作者 童霈文 徐晖 +5 位作者 孙毅 汪泳州 彭杰 廖岑 王伟 李清江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期582-590,共9页
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ... Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency. 展开更多
关键词 MEMRISTOR LIGHTWEIGHT ROBUST hybrid neural networks depthwise separable convolution bidirectional gate recurrent unit(BiGRU) one-transistor one-resistor(1T1R)arrays
下载PDF
A Framework of Lightweight Deep Cross-Connected Convolution Kernel Mapping Support Vector Machines
7
作者 Qi Wang Zhaoying Liu +3 位作者 Ting Zhang Shanshan Tu Yujian Li Muhammad Waqas 《Journal on Artificial Intelligence》 2022年第1期37-48,共12页
Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classifi... Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classification.However,the depth kernel mapping support vector machine does not take into account the connection of different dimensional spaces and increases the model parameters.To further improve the recognition capability of deep kernel mapping support vector machines while reducing the number of model parameters,this paper proposes a framework of Lightweight Deep Convolutional Cross-Connected Kernel Mapping Support Vector Machines(LC-CKMSVM).The framework consists of a feature extraction module and a classification module.The feature extraction module first maps the data from low-dimensional to high-dimensional space by fusing the representations of different dimensional spaces through cross-connections;then,it uses depthwise separable convolution to replace part of the original convolution to reduce the number of parameters in the module;The classification module uses a soft margin support vector machine for classification.The results on 6 different visual datasets show that LC-CKMSVM obtains better classification accuracies on most cases than the other five models. 展开更多
关键词 convolutional neural network cross-connected lightweight framework depthwise separable convolution
下载PDF
Microphone Array Speech Separation Algorithm Based on TC-ResNet
8
作者 Lin Zhou Yue Xu +2 位作者 Tianyi Wang Kun Feng Jingang Shi 《Computers, Materials & Continua》 SCIE EI 2021年第11期2705-2716,共12页
Traditional separation methods have limited ability to handle the speech separation problem in high reverberant and low signal-to-noise ratio(SNR)environments,and thus achieve unsatisfactory results.In this study,a co... Traditional separation methods have limited ability to handle the speech separation problem in high reverberant and low signal-to-noise ratio(SNR)environments,and thus achieve unsatisfactory results.In this study,a convolutional neural network with temporal convolution and residual network(TC-ResNet)is proposed to realize speech separation in a complex acoustic environment.A simplified steered-response power phase transform,denoted as GSRP-PHAT,is employed to reduce the computational cost.The extracted features are reshaped to a special tensor as the system inputs and implements temporal convolution,which not only enlarges the receptive field of the convolution layer but also significantly reduces the network computational cost.Residual blocks are used to combine multiresolution features and accelerate the training procedure.A modified ideal ratio mask is applied as the training target.Simulation results demonstrate that the proposed microphone array speech separation algorithm based on TC-ResNet achieves a better performance in terms of distortion ratio,source-to-interference ratio,and short-time objective intelligibility in low SNR and high reverberant environments,particularly in untrained situations.This indicates that the proposed method has generalization to untrained conditions. 展开更多
关键词 Residual networks temporal convolution neural networks speech separation
下载PDF
基于可分离卷积与小波变换融合的道路裂缝检测
9
作者 刘云清 吴越 +2 位作者 张琼 颜飞 陈姗姗 《计算机科学》 CSCD 北大核心 2024年第S02期304-312,共9页
针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部... 针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部分,通过深度可分离卷积增强模型的能力,扩大模型感受野,在跳跃连接部分引入了C2G注意力机制模块,提升模型对裂缝特征的感知能力;并引入了ASPP(Atrous Spatial Pyramid Pooling)和DWT(Discrete Wavelet Transformation)。ASPP通过在多个尺度上进行操作,有助于捕捉到裂缝的特征,而DWT能够减少卷积池化过程中的裂缝空间信息损失,保留裂缝边缘信息。这种结构设计使得网络更专注于裂缝的特征,从而提升了裂缝检测的准确性。通过实验证明所提模型显示出优于U-Net,Segnet,U2net等先进模型的精确性。在CFD数据集上mIoU,F1分别达到78.51%,0.868。这些成果表明,所提方法能有效提升道路裂缝检测的性能。 展开更多
关键词 裂缝检测 U-Net神经网络 深度可分离卷积 注意力机制 空间金字塔 小波变换
下载PDF
基于改进残差神经网络的滚动轴承故障检测
10
作者 刘晓阳 刘旭 +1 位作者 陈伟 王文清 《计算机仿真》 2024年第5期81-87,共7页
针对在矿井等特殊环境下在面对运算量大的复杂算法时,传统深度学习算法由于运算量大,现场检测设备由于需要消耗大量的资源无法完成现场检测的问题,提出了一种基于改进残差神经网络的滚动轴承故障检测方法。方法通过在卷积残差块和恒等... 针对在矿井等特殊环境下在面对运算量大的复杂算法时,传统深度学习算法由于运算量大,现场检测设备由于需要消耗大量的资源无法完成现场检测的问题,提出了一种基于改进残差神经网络的滚动轴承故障检测方法。方法通过在卷积残差块和恒等残差块中加入跳跃连接,尽可能地减少了信息的损失,并且将部分残差块中的普通卷积替换成深度可分离卷积,大大降低了运算量。实验表明,改进残差神经网络能够有效地提取数据的特征信息,提高运算的速度,在解决恶劣环境下大数据量难以现场运算的同时对滚动轴承故障检测的准确率有很大提高,准确率可达99.97%。 展开更多
关键词 滚动轴承 残差神经网络 故障检测 深度可分离卷积
下载PDF
煤矿工业物联网设备识别模型
11
作者 郝秦霞 李慧敏 《工矿自动化》 CSCD 北大核心 2024年第3期99-107,共9页
煤矿工业物联网(IIoT)设备计算与存储资源受限,易遭受非法网络入侵,造成敏感数据泄露或恶意篡改,威胁煤矿生产安全。精准识别煤矿IIoT设备可实现有效管理并维护设备正常运转,提高设备安全防护能力,然而现有设备识别算法存在特征构造复... 煤矿工业物联网(IIoT)设备计算与存储资源受限,易遭受非法网络入侵,造成敏感数据泄露或恶意篡改,威胁煤矿生产安全。精准识别煤矿IIoT设备可实现有效管理并维护设备正常运转,提高设备安全防护能力,然而现有设备识别算法存在特征构造复杂、内存与计算需求较高导致难以部署在资源受限的煤矿IIoT设备中等问题。针对上述问题,提出了一种煤矿IIoT设备识别模型。首先,对支持TCP/IP协议传输的流量数据进行流量切分、无关字段去除、去重、定长字段截取操作后转换为IDX格式存储;其次,使用卷积块注意力模块(CBAM)优化深度可分离卷积(DSC),从而搭建轻量级DSC−CBAM模型来过滤Non−IIoT设备;然后,利用带有阶段惩罚的Wasserstein生成对抗网络(WGAN−GP)扩充流量较少的煤矿IIoT设备数据,达到平衡偏移流量数据的目的;最后,在DSC−CBAM基础上引入多尺度特征融合(MFF)技术捕获浅层全局特征信息,并增加Mish激活函数提高模型训练稳定性,建立优化混合模态识别(MDCM)模型,实现煤矿IIoT设备精准识别。实验结果表明,该模型收敛速度快,准确率、召回率、精确率与F1−score指标均高达99.98%,且参数量小,能精准、高效识别煤矿IIoT设备。 展开更多
关键词 煤矿工业物联网 设备识别 深度可分离卷积 注意力机制 生成对抗网络
下载PDF
复杂场景下自适应注意力机制融合实时语义分割
12
作者 陈丹 刘乐 +2 位作者 王晨昊 白熙茹 王子晨 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3334-3342,共9页
实现高准确度和低计算负担是卷积神经网络(CNN)实时语义分割面临的严峻挑战。针对复杂城市街道场景目标种类众多、光照变化大等特点,该文设计了一种高效的实时语义分割自适应注意力机制融合网络(AAFNet)分别提取图像空间细节和语义信息... 实现高准确度和低计算负担是卷积神经网络(CNN)实时语义分割面临的严峻挑战。针对复杂城市街道场景目标种类众多、光照变化大等特点,该文设计了一种高效的实时语义分割自适应注意力机制融合网络(AAFNet)分别提取图像空间细节和语义信息,再经过特征融合网络(FFN)获得准确语义图像。AAFNet采用扩展的深度可分离卷积(DDW)可增大语义特征提取感受野,提出自适应平均池化(Avp)和自适应最大池化(Amp)构成自适应注意力机制融合模块(AAFM),可细化目标边缘分割效果并降低小目标的漏分率。最后在复杂城市街道场景Cityscapes和CamVid数据集上分别进行了语义分割实验,所设计的AAFNet以32帧/s(Cityscapes)和52帧/s(CamVid)的推理速度获得73.0%和69.8%的平均分割精度(mIoU),且与扩展的空间注意力网络(DSANet)、多尺度上下文融合网络(MSCFNet)以及轻量级双边非对称残差网络(LBARNet)相比,AAFNet平均分割精度最高。 展开更多
关键词 卷积神经网络 复杂城市街道场景 扩展的深度可分离卷积 自适应注意力机制融合 分割精度
下载PDF
基于多域信息融合与深度分离卷积的轴承故障诊断网络模型 被引量:3
13
作者 王同 许昕 潘宏侠 《机电工程》 北大核心 2024年第1期22-32,共11页
针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了... 针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了分解;然后,利用分解出的本征模态函数(IMF)的各个分量构建了多空间状态矩阵,并将该多空间状态矩阵输入该深度分离卷积模型中,进行了卷积训练;同时,在该深度分离卷积模型中添加了残差结构,对数据特征进行了复利用,并对卷积核进行了深度分离,解决了深度模型的网络退化问题;最后,提出了一种空间特征提取方法,对模型参数进行了修剪,采用一种自适应学习率退火方法进行了梯度优化,以避免模型陷入局部最优。研究结果表明:通过对多个轴承故障数据集进行对比分析可知,MDIDSC在轴承故障诊断方面的准确率和稳定性明显优于其他方法,MDIDSC的最高测试准确率为100%,平均测试准确率为99.07%;同时,在测试集中的最大损失和平均损失分别为0.1345和0.0841;该结果表明MDIDSC在轴承故障诊断方面具有一定的优越性。 展开更多
关键词 深度分离卷积 信息融合 参数修剪 残差网络 卷积神经网络 自适应噪声的完全集合经验模态分解 本征模态函数 多域信息融合结合深度分离卷积
下载PDF
基于深度可分离卷积和残差注意力模块的车道线检测方法 被引量:1
14
作者 崔明义 冯治国 +2 位作者 代建琴 赵雪峰 袁森 《激光杂志》 CAS 北大核心 2024年第4期81-87,共7页
针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈... 针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈残差单元降低网络参数数量,引入ECANet注意力机制增加重要特征通道权重,提升车道线检测精度。在Tusimple数据集和GZUCDS自建数据集上的实验结果表明:在晴天场景下,LPINet网络车道线检测精度可达96.62%,且模型参数量降至1.64 MB,实现了轻量化设计;在雾天、雨天、夜晚和隧道复杂场景中进行了探索性研究,车道线检测精度达到93.86%,证明了方法的有效性。 展开更多
关键词 车道线检测 深度学习 残差网络 深度可分离卷积 注意力机制
下载PDF
基于改进ResNet模型的番茄叶片病虫害识别 被引量:2
15
作者 王圆 祝俊辉 +4 位作者 周贤勇 胡敏 侯津津 徐明升 陈琳 《激光杂志》 CAS 北大核心 2024年第5期209-214,共6页
识别早期番茄叶片的病虫害是预防番茄病虫害、提升产量的关键步骤之一。基于改进ResNet50识别番茄叶片病虫害。根据不同病虫害类别创建5种不同番茄病虫害数据集,并采用数据增强方式对数据进行预处理。在原始模型ResNet50的基础上,通过... 识别早期番茄叶片的病虫害是预防番茄病虫害、提升产量的关键步骤之一。基于改进ResNet50识别番茄叶片病虫害。根据不同病虫害类别创建5种不同番茄病虫害数据集,并采用数据增强方式对数据进行预处理。在原始模型ResNet50的基础上,通过在网络模型结构中添加SE注意力机制模块让模型能够更准确地识别待检测目标。此外为了减少模型的参数量,实现更加轻量化的模型,利用深度可分离卷积替换传统卷积。为了说明改进模型的有效性,分析改进后的模型在番茄叶片病虫害数据集上的性能,将其与传统卷积神经网络ResNet50、AlexNet、VGG16、GoogLeNet进行对比。实验结果表明,改进后的模型相较于原模型参数量降低了37.5%,准确率达到了97.4%,与原模型相比,其准确率提升了4.4%。综上所述,本模型实现了性能与参数量之间的良好平衡,为后续在实际环境中番茄叶片病虫害识别系统部署提供可能。 展开更多
关键词 番茄 叶片病虫害 注意力机制 深度可分离卷积 卷积神经网络 识别分类
下载PDF
基于欠定盲源分离和深度学习的生猪状态音频识别
16
作者 潘伟豪 盛卉子 +4 位作者 王春宇 闫顺丕 周小波 辜丽川 焦俊 《华南农业大学学报》 CAS CSCD 北大核心 2024年第5期730-742,共13页
【目的】为解决群养环境下生猪音频难以分离与识别的问题,提出基于欠定盲源分离与E C A-EfficientNetV2的生猪状态音频识别方法。【方法】以仿真群养环境下4类生猪音频信号作为观测信号,将信号稀疏表示后,通过层次聚类估计出信号混合矩... 【目的】为解决群养环境下生猪音频难以分离与识别的问题,提出基于欠定盲源分离与E C A-EfficientNetV2的生猪状态音频识别方法。【方法】以仿真群养环境下4类生猪音频信号作为观测信号,将信号稀疏表示后,通过层次聚类估计出信号混合矩阵,并利用lp范数重构算法求解lp范数最小值以完成生猪音频信号重构。将重构信号转化为声谱图,分为进食声、咆哮声、哼叫声和发情声4类,利用ECA-EfficientNetV2网络模型识别音频,获取生猪状态。【结果】混合矩阵估计的归一化均方误差最低为3.266×10^(−4),分离重构的音频信噪比在3.254~4.267 dB之间。声谱图经ECA-EfficientNetV2识别检测,准确率高达98.35%;与经典卷积神经网络ResNet50和VGG16对比,准确率分别提升2.88和1.81个百分点;与原EfficientNetV2相比,准确率降低0.52个百分点,但模型参数量减少33.56%,浮点运算量(FLOPs)降低1.86 G,推理时间减少9.40 ms。【结论】基于盲源分离及改进EfficientNetV2的方法,轻量且高效地实现了分离与识别群养生猪音频信号。 展开更多
关键词 盲源分离 声谱图 音频识别 稀疏重构 卷积神经网络
下载PDF
基于RISC-Ⅴ的深度可分离卷积神经网络加速器
17
作者 曹希彧 陈鑫 魏同权 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2536-2551,共16页
人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷... 人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷积神经网络对高性能计算的需求.为了解决这一问题,本文设计了一个基于RISC-Ⅴ的轻量化深度可分离卷积神经网络加速器,旨在弥补RISC-Ⅴ处理器的卷积计算能力的不足.该加速器支持深度可分离卷积中的两个关键算子,即深度卷积和点卷积,并能够通过共享硬件结构提高资源利用效率.深度卷积计算流水线采用了高效的Winograd卷积算法,并使用2×2数据块组合拼接成4×4数据片的方式来减少传输数据冗余.同时,通过拓展RISC-Ⅴ处理器端指令,使得加速器能够实现更灵活的配置和调用.实验结果表明,相较于基础的RISC-Ⅴ处理器,调用加速器后的点卷积和深度卷积计算取得了显著的加速效果,其中点卷积加速了104.40倍,深度卷积加速了123.63倍.与此同时,加速器的性能功耗比达到了8.7GOPS/W.本文的RISC-Ⅴ处理器结合加速器为资源受限环境下卷积神经网络的部署提供了一个高效可行的选择. 展开更多
关键词 神经网络 深度可分离卷积 RISC-Ⅴ Winograd快速卷积 硬件加速
下载PDF
面向多复杂场景环境的敞车车号辨识研究
18
作者 薛峰 于国丞 +3 位作者 李世杰 凌烈鹏 张峰峰 陈峰炜 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第6期1162-1169,共8页
针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深... 针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深度可分离卷积的敞车车号特征提取网络设计。提出基于改进卷积循环神经网络的车号定位识别模型,主要针对识别网络模型结构进行设计。通过不同环境下采集的敞车车厢图片对本文提出的方法进行验证。结果表明:本文提出的车号定位方法的准确率为0.94,车号识别的准确率为0.97。 展开更多
关键词 车号定位 深度可分离卷积 特征提取 改进卷积循环神经网络 特征金字塔 字符识别 铁路货运 深度学习
下载PDF
改进型的MobileNet的轻量级人脸表情识别方法
19
作者 吴振荣 邱卫根 张立臣 《信息技术》 2024年第8期44-50,58,共8页
为了解决目前轻量级卷积神经网络MobileNet应用于人脸表情识别准确率不高、实时性差和时空负载大等问题,文中提出了一种改进型的MobileNet的轻量级人脸表情识别方法。该方法在MobileNet X的基础上,引入SE注意力模块并针对表情图像的特... 为了解决目前轻量级卷积神经网络MobileNet应用于人脸表情识别准确率不高、实时性差和时空负载大等问题,文中提出了一种改进型的MobileNet的轻量级人脸表情识别方法。该方法在MobileNet X的基础上,引入SE注意力模块并针对表情图像的特点对深度卷积层和网络结构进行优化,避免了信息丢失和神经元“坏死”问题,提高了模型的人脸表情识别率。与MobileNet X模型相比,改进后的网络模型复杂度低、识别精度高。在Fer2013人脸表情数据集上的实验证明,文中方法得到了73.54%的识别率,较其他表情识别方法在识别率和时间效率上都有一定提高。 展开更多
关键词 人脸表情识别 卷积神经网络 轻量级 注意力机制 深度可分离卷积
下载PDF
高效注意力金字塔网络在肺结节检测的应用
20
作者 张琼 杭益柳 +1 位作者 邱建林 吴芳 《中国医学物理学杂志》 CSCD 2024年第11期1361-1369,共9页
针对肺部CT图像结节特征不明确和检测困难的问题,提出一种高效注意力特征金字塔网络。首先,该网络以多尺度特征融合的特征金字塔为主干网络,保留丰富的低层特征和高层特征,同时采用深度可分离卷积神经网络提取特征信息;然后,将注意力机... 针对肺部CT图像结节特征不明确和检测困难的问题,提出一种高效注意力特征金字塔网络。首先,该网络以多尺度特征融合的特征金字塔为主干网络,保留丰富的低层特征和高层特征,同时采用深度可分离卷积神经网络提取特征信息;然后,将注意力机制融入主干网络中,对重要特征信息进行加权处理;最后,将所提算法应用在Lung-PET-CT-Dx和Luna16数据集中。实验结果表明,本文算法的精度、召回率和mAP值均优于现有对比算法,证明本文算法在肺结节检测的优越性。 展开更多
关键词 肺结节 深度可分离卷积神经网络 注意力机制 特征金字塔 目标检测
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部