Detection of edges in piecewise smooth functions is important in many applications.Higher order reconstruction algorithms in image processing and post processing of numerical solutions to partial differential equation...Detection of edges in piecewise smooth functions is important in many applications.Higher order reconstruction algorithms in image processing and post processing of numerical solutions to partial differential equations require the identification of smooth domains,creating the need for algorithms that will accurately identify discontinuities in a given function as well as those in its gradient.This work expands the use of the polynomial annihilation edge detector,(Archibald,Gelb and Yoon,2005),to locate discontinuities in the gradient given irregularly sampled point values of a continuous function.The idea is to preprocess the given data by calculating the derivative,and then to use the polynomial annihilation edge detector to locate the jumps in the derivative.We compare our results to other recently developed methods.展开更多
基金This work was partially supported by NSF grants CNS 0324957DMS 0617867+2 种基金DMS 0608844(AG)DMS 0510813(AG and HM)DMS 0421846(AG and HM).
文摘Detection of edges in piecewise smooth functions is important in many applications.Higher order reconstruction algorithms in image processing and post processing of numerical solutions to partial differential equations require the identification of smooth domains,creating the need for algorithms that will accurately identify discontinuities in a given function as well as those in its gradient.This work expands the use of the polynomial annihilation edge detector,(Archibald,Gelb and Yoon,2005),to locate discontinuities in the gradient given irregularly sampled point values of a continuous function.The idea is to preprocess the given data by calculating the derivative,and then to use the polynomial annihilation edge detector to locate the jumps in the derivative.We compare our results to other recently developed methods.