In this paper, the ill-posedness of derivative interpolation is discussed, and a regularized derivative interpolation for non-bandlimited signals is presented. The convergence of the regularized derivative interpolati...In this paper, the ill-posedness of derivative interpolation is discussed, and a regularized derivative interpolation for non-bandlimited signals is presented. The convergence of the regularized derivative interpolation is studied. The numerical results are given and compared with derivative interpolation using the Tikhonov regularization method. The regularized derivative interpolation in this paper is more accurate in computation.展开更多
The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen-...The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.展开更多
In this paper,we study a special class of fractal interpolation functions,and give their Haar-wavelet expansions.On the basis of the expansions,we investigate the H(o|¨)lder smoothness of such functions and their...In this paper,we study a special class of fractal interpolation functions,and give their Haar-wavelet expansions.On the basis of the expansions,we investigate the H(o|¨)lder smoothness of such functions and their logical derivatives of order α.展开更多
Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P&...Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P'n-1(x). By the theory of the inverse Pal-Type interpolation, for a function f(x) ∈ C[-1 1], there exists a unique polynomial Rn(x) of degree 2n - 2 (if n is even) satisfying conditions Rn(f,ξk) = f(∈ek)(1≤ k≤ n - 1) ;R'n(f,xk) = f'(xk)(1≤ k≤ n). This paper discusses the simultaneous approximation to a differentiable function f by inverse Pal-Type interpolation polynomial {Rn(f,x)} (n is even) and the main result of this paper is that if f ∈ C'[1,1], r≥2, n≥ + 2> and n is even thenholds uniformly for all x ∈ [- 1,1], where h(x) = 1 +展开更多
This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of...This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).展开更多
An advanced Gauss pseudospectral method(AGPM) was proposed to estimate the parameters of the continuous-time(CT)Hammerstein model.The nonlinear part of the Hammerstein system is approximated with pseudospectral approx...An advanced Gauss pseudospectral method(AGPM) was proposed to estimate the parameters of the continuous-time(CT)Hammerstein model.The nonlinear part of the Hammerstein system is approximated with pseudospectral approximation method.The linear part was written as a controllable canonical form to circumvent the high order time-derivative of the input and output(I/O) signals,which could multiply the measurement noise in the identification procession.Furthermore,an output error minimization was constructed for the CT Hammerstein model identification,which was then transcribed into a nonlinear programming(NLP) problem by AGPM.AGPM could converge to the true values of the CT Hammerstein model with few interpolated Legendre-Gauss(LG) nodes.Lastly,two illustrative examples were proposed to verify the accuracy and efficiency of the method.展开更多
文摘In this paper, the ill-posedness of derivative interpolation is discussed, and a regularized derivative interpolation for non-bandlimited signals is presented. The convergence of the regularized derivative interpolation is studied. The numerical results are given and compared with derivative interpolation using the Tikhonov regularization method. The regularized derivative interpolation in this paper is more accurate in computation.
文摘The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.
文摘In this paper,we study a special class of fractal interpolation functions,and give their Haar-wavelet expansions.On the basis of the expansions,we investigate the H(o|¨)lder smoothness of such functions and their logical derivatives of order α.
文摘Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P'n-1(x). By the theory of the inverse Pal-Type interpolation, for a function f(x) ∈ C[-1 1], there exists a unique polynomial Rn(x) of degree 2n - 2 (if n is even) satisfying conditions Rn(f,ξk) = f(∈ek)(1≤ k≤ n - 1) ;R'n(f,xk) = f'(xk)(1≤ k≤ n). This paper discusses the simultaneous approximation to a differentiable function f by inverse Pal-Type interpolation polynomial {Rn(f,x)} (n is even) and the main result of this paper is that if f ∈ C'[1,1], r≥2, n≥ + 2> and n is even thenholds uniformly for all x ∈ [- 1,1], where h(x) = 1 +
基金The second named author was supported in part by an NSERC Postdoctoral Fellowship,Canada and a CR F Grant,University of Alberta
文摘This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).
文摘An advanced Gauss pseudospectral method(AGPM) was proposed to estimate the parameters of the continuous-time(CT)Hammerstein model.The nonlinear part of the Hammerstein system is approximated with pseudospectral approximation method.The linear part was written as a controllable canonical form to circumvent the high order time-derivative of the input and output(I/O) signals,which could multiply the measurement noise in the identification procession.Furthermore,an output error minimization was constructed for the CT Hammerstein model identification,which was then transcribed into a nonlinear programming(NLP) problem by AGPM.AGPM could converge to the true values of the CT Hammerstein model with few interpolated Legendre-Gauss(LG) nodes.Lastly,two illustrative examples were proposed to verify the accuracy and efficiency of the method.