The radiative forcing(RF) of Asian desert dust and its regional feedbacks to the East Asian summer monsoon(EASM) system are investigated with a coupled regional climate-desert dust model.The statistical significance o...The radiative forcing(RF) of Asian desert dust and its regional feedbacks to the East Asian summer monsoon(EASM) system are investigated with a coupled regional climate-desert dust model.The statistical significance of desert dust effects are analyzed through 20 summer seasons(1990-2009).In order to estimate the dust effects reasonably,some improvement has been achieved for the coupled model,including the updates of optical properties and desert source area distribution.We find that the desert dust can result in a roughly weakened monsoon in eastern China,Korean Peninsula,Japan and Indian Peninsula and a strengthened monsoon in Indochina Peninsula in the lower troposphere.Moreover,the precipitation comparisons between observational data and simulated patterns are also suggestive of the desert dust effect on the EASM.In the upper troposphere,the southward shift of the westerly jet(WJ) by the dust effect can be seen as an indicator of the weakened monsoon in great part of the monsoon areas.The change of the moist static energy(MSE) contrast between land and ocean is the main reason for the EASM variations.展开更多
Based on the sand dust storms data and climatic data in 12 meteorological stations around sand dust storm originating areas of the Taklimakan Desert, we analyzed the trends of the number of dust storm days from 1960 t...Based on the sand dust storms data and climatic data in 12 meteorological stations around sand dust storm originating areas of the Taklimakan Desert, we analyzed the trends of the number of dust storm days from 1960 to 2005 as well as their correlations with temperature, precipitation, wind speed and the number of days with mean wind speed 〉 5 m/s. The results show that the frequency of dust storm events in the Taklimakan region decreased with the elapse of time. Except Ruoqiang and Minfeng, in the other 10 meteorological stations, the frequency of dust storm events reduces, and in 4 meteorological stations of Kuqa, Korla, Kalpin and Hotan, the frequency of dust storm events distinctly decreases. The temperature has an increasing trend, while the average wind speed and the number of days with mean wind speed ≥ 5 m/s have decreasing trends. The correlation analysis between the number of days of dust storms and climatic parameters demonstrates that wind speed and the number of days with mean wind speed 〉 5 m/s have strong positive correlation with the number of days of dust storms, with the correlations coefficients being 0.743 and 0.720 (p〈0.01), respectively, which indicates that strong wind is the direct factor resulting in sand dust storms. Whereas precipitation has significant negative correlation with the number of days of dust storms (p〈0.01), and the prior annual precipitation has also negative correlation, which indicates that the prior precipitation restrains the occurrence of sand dust storms, but this restraining action is weaker than the same year's precipitation. Temperature has negative correlation with the number of dust storm days, with a correlations coefficient of -0.433 (p〈0.01), which means that temperature change also has impacts on the occurrence of dust storm events in the Taklimakan region.展开更多
The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP ...The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP from January of 2009 to February of 2010 in the Taklimakan Desert hinterland. Results show that: (1) The mass concentration value of 80 m PMl0 was higher, but PM2.5 and PM1.0 concentrations at 80 m was obviously lower than 4 m PMl0, and the value of 80 m PM1.0 mass concentration was the lowest. (2) The PM mass concentrations gradually decreased from night to sunrise, with the lowest concentration at 08:00, with the mass concentration gradually increased, up to the highest concentration around 18:00, and then decreased again. It was exactly the same with the changes of wind speed. (3) The high monthly average mass concentration of TSP mainly appeared from March to September, and the highest concentration was in April and May, subsequently gradually decreased. Also, March-September was a period with high value area of PM monthly average mass concentration, with the highest monthly average mass concentration of 846.0 p.g/m3 for 4 m PM^0 appeared in May. The concentration of PM10 was much higher than those of PM2.5 and PM1.0 at 80 m. There is a small difference between the concentration of PM2.5 and PM~ 0. Dust weather was the main factor which influenced the concentration content of the different diameter dust aerosol, and the more dust weather days, the higher content of coarse particle, conversely, fine particle was more. (4) The mass concentration of different diameter aerosols had the following sequence during dust weather: clear day 〈 blowing dust 〈 floating and blowing dust 〈 sandstorm. In different dust weather, the value of PM^o/TSP in fine weather was higher than that in floating weather, and much higher than those in blowing dust and sandstorm weather. (5) During the dust weather process, dust aerosol concentration gradually decreased with particle size decreasing. The dust aerosol mass concentration at different heights and diameter would have a peak value area every 3-4 days according to the strengthening process of dust weather.展开更多
Salt desert,saline-alkaline dust storm and saline-alkaline mixed dust storm are significant but ignored problems for a long time.After many years of observations and researches,the author believes that salt desert,sal...Salt desert,saline-alkaline dust storm and saline-alkaline mixed dust storm are significant but ignored problems for a long time.After many years of observations and researches,the author believes that salt desert,saline-alkaline dust展开更多
In recent years, the physical and chemical properties of dust aerosols from the dust source area in northem China have attracted increased attention. In this paper, Thermo RP 1400a was used for online continuous obser...In recent years, the physical and chemical properties of dust aerosols from the dust source area in northem China have attracted increased attention. In this paper, Thermo RP 1400a was used for online continuous observation and study of the hinterland of Taldimakan, Tazhong, and surrounding areas of Kurnul and Hotan from 2004 to 2006. In combination with weather analysis during a sandstorm in the Tazhong area, basic characteristics and influencing factors of dust aerosol PMl0 have been summarized as below: (1) The occurrence days of floating dust and blowing dust appeared with an increasing trend in Kumul, Tazhong and Hotan, while the number of dust storm days did not significantly change. The frequency and intensity of dust weather were major factors affecting the concentration of dust aerosol PMI0 in the desert. (2) The mass concentration of PM10 had significant regional distribution characteris- tics, and the mass concentration at the eastern edge of Taklimakan, Kumul, was the lowest; second was the southern edge of the desert, Hotan; and the highest was in the hinterland of the desert, Tazhong. (3) High values of PM10 mass concentration in Kumul was from March to September each year; high values of PM^0 mass concentration in Tazhong and Hotan were distributed from March to August and the average concenlration changed from 500 to 1,000 gg/m3, respectively. (4) The average seasonal concentration changes of PM10 in Kumul, Tazhong and Hotan were: spring 〉 summer 〉 autumn 〉 winter; the highest average concentration of PMl0in Tazhong, was about 1,000 gg/m3 in spring and between 400 and 900 gg/m3 in summer, and the average concentration was lower in autumn and winter, basically between 200 and 400 gg/m3. (5) PMl0 concentration during the sandstorm season was just over two times the con- centration of the non-sandstorm season in Kumul, Tazhong and Hotan. The average concentrations of sandstorm season in Tazhong were 6.2 and 3.6 times the average concentrations of non-sandstorm season in 2004 and 2008, respectively. (6) The mass concentra- tion of PM10 had the following sequence during the dust weather: clear day 〈 floating dust 〈 floating and blowing dust 〈 sandstorm. The wind speed directly affects the concentration of PM10 in the atmosphere, the higher the wind speed, the higher the mass concen- tration. Temperature, relative humidity and bammelric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of PM~ 0 in the atmosphere.展开更多
Hotan Prefecture is located at the southwestern edge of Taklimakan Desert, the world's largest shifting sand desert, of China. The desert is one of the main sources for frequent sand-dust weather events which strongl...Hotan Prefecture is located at the southwestern edge of Taklimakan Desert, the world's largest shifting sand desert, of China. The desert is one of the main sources for frequent sand-dust weather events which strongly affect the air quality of Hotan Prefecture. Although this region is characterized by the highest annual mean PMlo concentration values that are routinely recorded by environmental monitoring stations across China, both this phenomenon and its underlying causes have not been adequately addressed in previous researches. Reliable pollutant PM_10 data are currently retrieved using a tapered element oscillating microbalance (TEOM) 1400a, a direct real-time monitor, while additional concentration values including for PM_2.5, sulfur dioxide (SO_2), nitrogen dioxide (NO_2), carbon monoxide (CO) and ozone (O_3) have been collected in recent years by the Hotan Environmental Monitoring Station. Based on these data, this paper presents a comparison of the influences of different kinds of sand-dust weather events on PM_10 (or PM_2.5) as well as the concentrations of other gaseous pollutants in Hotan Prefecture. It is revealed that the highest monthly average PM_10 concentrations are observed in the spring because of the frequent occurrence of three distinct kinds of sand-dust weather events at this time, including dust storms, blowing dust and floating dust. The floating dust makes the most significant contribution to PM_10 (or PM_2.5) concentration in this region, a result that differs from eastern Chinese cities where the heaviest PM_10 pollution occurs usually in winter and air pollution results from the excess emission of local anthropogenic pollutants. It is also shown that PM_10 concentration varies within wpical dust storms. PM_10 concentrations vary among 20 dust storm events within Hotan Prefecture, and the hourly mean concentrations tend to sharply increase initially then slowly decreasing over time. Data collected from cities in eastern China show the opposite with the hourly mean PM_10 (or PM_2.5) concentration tending to slowly increase then sharply decrease during heavy air pollution due to the excess emission of local anthropogenic pollutants. It is also found that the concentration of gaseous pollutants during sand-dust weather events tends to be lower than those cases under clear sky conditions. This indicates that these dust events effectively remove and rapidly diffuse gaseous pollutants. The analysis also shows that the concentration of SO_2 decreases gradually at the onset of all three kinds of sand-dust weather events because of rapidly increasing wind velocity and the development of favorable atmospheric conditions for diffusion. In contrast, changes in O_3 and NO_2 concentrations conformed to the opposite pattern during all three kinds of sand-dust weather events within this region, implying the inter transformation of these gas species during these events.展开更多
Based on automatic continuous surface ozone concentration observation data from June 10, 2010 to March 20, 2012 in the Taklimakan Desert hinterland, combined with corresponding meteorological data, the temporal, seaso...Based on automatic continuous surface ozone concentration observation data from June 10, 2010 to March 20, 2012 in the Taklimakan Desert hinterland, combined with corresponding meteorological data, the temporal, seasonal and daily variation characteristics of surface ozone concentrations under different weather conditions were analyzed. At the same time, the main fac- tors affecting ozone variation are discussed. Results show that: (1) Daily variation of ozone concentration was characterized by one obvious peak, with gentle changes during the night and dramatic changes during the day. The lowest concentration was at 09:00 and the highest was at 18:00. Compared to urban areas, there was a slight time delay. (2) Ozone concentration variation had a weekend effect phenomenon. Weekly variation of ozone concentration decreased from Monday to Wednesday with the lowest in Wednesday, and increased after Thursday with the highest in Sunday. (3) The highest monthly average concentration was 89.6 I.tg/m3 in June 2010, and the lowest was 32.0 ~g/m3 in January 2012. Ozone concentration reduced month by month from June to December in 2010. (4) Ozone concentration in spring and summer was higher than in autumn and winter. The variation trend agreed with those in other large and medium-sized cities. (5) Under four different types of weather, daily ozone concentration var- ied most dramatically in sunny days, followed by slight variation in rain days, and varied gently in cloudy days. Ozone concentra- tion varied inconspicuously before a sandstorm appearance, and dropped rapidly at the onset of a sandstorm. (6) Daily variation of radiation was also characterized by a single peak, and the variation was significantly earlier than ozone concentration variation. Sun radiation intensity had a direct influence on the photochemical reaction speed, leading to variation of ozone concentration. (7) Daily average ozone concentration in dust weather was higher than in slight rain and clear days. The variation of near surface ozone concentration could also be affected by meteorological factors such as relative humidity, wind speed, wind direction and sunshine hours. Thus, numerous factors working together led to ozone pollution.展开更多
Sand-dust storm is a type of disastrous weather, typically occurring in arid and semi-arid climates. This study selected a region in the hinterlands of the Taklimakan Desert, called the Tazhong region, as the experime...Sand-dust storm is a type of disastrous weather, typically occurring in arid and semi-arid climates. This study selected a region in the hinterlands of the Taklimakan Desert, called the Tazhong region, as the experimental area to quantitatively estimate the particle concentrations of sand-dust storms using the boundary layer wind-profiling radar. We thoroughly studied the radar echo signals and reflectivity factor features during the sand-dust storms. The results indicate that(1) under sand-dust storm conditions, boundary layer wind-profiling radar cannot capture the complete information regarding horizontal wind velocity and direction, but it can obtain the backscattering intensity of sand-dust storms; and(2) during sand-dust storms particle size distributions in the surface layer closely resemble log-normal distributions, with sand-dust particles sizes of 90–100 μm accounting for the maximum particle probability. Retrieved particle size distributions at heights of 600, 800, and 1000 m follow log-normal distributions, and the expected value of particle diameter decreases gradually with increasing height. From the perspective of orders of magnitude, the retrieved results for particle number concentrations and mass concentrations are consistent with previous aircraft-detected results, indicating that it is basically feasible to use boundary layer wind-profiling radar to quantitatively detect the particle concentrations of dust storms.展开更多
作为中国最大和世界第二大流动沙漠,塔克拉玛干沙漠是我国主要的沙尘暴中心之一,其沙尘天气对当地及周边地区的生产生活会造成巨大影响。利用VOSviewer可视化分析工具,以中国知网(CNKI)数据库和Web of Science核心数据库中塔克拉玛干沙...作为中国最大和世界第二大流动沙漠,塔克拉玛干沙漠是我国主要的沙尘暴中心之一,其沙尘天气对当地及周边地区的生产生活会造成巨大影响。利用VOSviewer可视化分析工具,以中国知网(CNKI)数据库和Web of Science核心数据库中塔克拉玛干沙漠沙尘暴相关355篇文献为对象,从发文时间、作者、关键词、期刊来源与学科分布、发文机构(国家)等方面进行可视化与计量分析,进而综述了塔克拉玛干沙漠沙尘暴研究的现状及发展趋势和未来展望。结果表明:塔克拉玛干沙漠沙尘暴研究的中英文文献产出分为2个阶段,即1996—2005年为起步阶段,2006—2020年为稳步发展阶段;塔克拉玛干沙漠沙尘暴的成因、传输特征及发展规律、沙尘暴过程数值模拟预报研究、沙尘天气及沙漠气象等问题受到了国内外众多学者的高度关注;相关论文主要发表在《沙漠与绿洲气象》、《中国沙漠》及Journal of Geophysical Research Atmospheres等期刊,其中《沙漠与绿洲气象》为中文发文量最多的核心期刊,Journal of Geophysical Research Atmospheres为SCI发文量最高的期刊。展开更多
The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To in...The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically,the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr.1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m.2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore,the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively.展开更多
基金National Basic Research Program of China(2011CB403202)
文摘The radiative forcing(RF) of Asian desert dust and its regional feedbacks to the East Asian summer monsoon(EASM) system are investigated with a coupled regional climate-desert dust model.The statistical significance of desert dust effects are analyzed through 20 summer seasons(1990-2009).In order to estimate the dust effects reasonably,some improvement has been achieved for the coupled model,including the updates of optical properties and desert source area distribution.We find that the desert dust can result in a roughly weakened monsoon in eastern China,Korean Peninsula,Japan and Indian Peninsula and a strengthened monsoon in Indochina Peninsula in the lower troposphere.Moreover,the precipitation comparisons between observational data and simulated patterns are also suggestive of the desert dust effect on the EASM.In the upper troposphere,the southward shift of the westerly jet(WJ) by the dust effect can be seen as an indicator of the weakened monsoon in great part of the monsoon areas.The change of the moist static energy(MSE) contrast between land and ocean is the main reason for the EASM variations.
基金National Science and Technology support Project of the Extreme Meteorological Disasters Risk Regionalization and Impact ssessment,No.2007BAC29B05CMA project of Meteorological Disaster Assessment,No.20082012208
文摘Based on the sand dust storms data and climatic data in 12 meteorological stations around sand dust storm originating areas of the Taklimakan Desert, we analyzed the trends of the number of dust storm days from 1960 to 2005 as well as their correlations with temperature, precipitation, wind speed and the number of days with mean wind speed 〉 5 m/s. The results show that the frequency of dust storm events in the Taklimakan region decreased with the elapse of time. Except Ruoqiang and Minfeng, in the other 10 meteorological stations, the frequency of dust storm events reduces, and in 4 meteorological stations of Kuqa, Korla, Kalpin and Hotan, the frequency of dust storm events distinctly decreases. The temperature has an increasing trend, while the average wind speed and the number of days with mean wind speed ≥ 5 m/s have decreasing trends. The correlation analysis between the number of days of dust storms and climatic parameters demonstrates that wind speed and the number of days with mean wind speed 〉 5 m/s have strong positive correlation with the number of days of dust storms, with the correlations coefficients being 0.743 and 0.720 (p〈0.01), respectively, which indicates that strong wind is the direct factor resulting in sand dust storms. Whereas precipitation has significant negative correlation with the number of days of dust storms (p〈0.01), and the prior annual precipitation has also negative correlation, which indicates that the prior precipitation restrains the occurrence of sand dust storms, but this restraining action is weaker than the same year's precipitation. Temperature has negative correlation with the number of dust storm days, with a correlations coefficient of -0.433 (p〈0.01), which means that temperature change also has impacts on the occurrence of dust storm events in the Taklimakan region.
基金supported by Natural Science Founda-tion of China(Nos.41375162,41175017,41175140)China Special Fund for Meteorological Research in the Public Interest(Nos.GYHY201006012,GYHY201106025)
文摘The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP from January of 2009 to February of 2010 in the Taklimakan Desert hinterland. Results show that: (1) The mass concentration value of 80 m PMl0 was higher, but PM2.5 and PM1.0 concentrations at 80 m was obviously lower than 4 m PMl0, and the value of 80 m PM1.0 mass concentration was the lowest. (2) The PM mass concentrations gradually decreased from night to sunrise, with the lowest concentration at 08:00, with the mass concentration gradually increased, up to the highest concentration around 18:00, and then decreased again. It was exactly the same with the changes of wind speed. (3) The high monthly average mass concentration of TSP mainly appeared from March to September, and the highest concentration was in April and May, subsequently gradually decreased. Also, March-September was a period with high value area of PM monthly average mass concentration, with the highest monthly average mass concentration of 846.0 p.g/m3 for 4 m PM^0 appeared in May. The concentration of PM10 was much higher than those of PM2.5 and PM1.0 at 80 m. There is a small difference between the concentration of PM2.5 and PM~ 0. Dust weather was the main factor which influenced the concentration content of the different diameter dust aerosol, and the more dust weather days, the higher content of coarse particle, conversely, fine particle was more. (4) The mass concentration of different diameter aerosols had the following sequence during dust weather: clear day 〈 blowing dust 〈 floating and blowing dust 〈 sandstorm. In different dust weather, the value of PM^o/TSP in fine weather was higher than that in floating weather, and much higher than those in blowing dust and sandstorm weather. (5) During the dust weather process, dust aerosol concentration gradually decreased with particle size decreasing. The dust aerosol mass concentration at different heights and diameter would have a peak value area every 3-4 days according to the strengthening process of dust weather.
文摘Salt desert,saline-alkaline dust storm and saline-alkaline mixed dust storm are significant but ignored problems for a long time.After many years of observations and researches,the author believes that salt desert,saline-alkaline dust
基金supported by Natural Science Foundation of China (41175017, 41175140)Public Service Sectors (Meteorology) Research and Special Funds (GYHY201006012, GYHY201106025)
文摘In recent years, the physical and chemical properties of dust aerosols from the dust source area in northem China have attracted increased attention. In this paper, Thermo RP 1400a was used for online continuous observation and study of the hinterland of Taldimakan, Tazhong, and surrounding areas of Kurnul and Hotan from 2004 to 2006. In combination with weather analysis during a sandstorm in the Tazhong area, basic characteristics and influencing factors of dust aerosol PMl0 have been summarized as below: (1) The occurrence days of floating dust and blowing dust appeared with an increasing trend in Kumul, Tazhong and Hotan, while the number of dust storm days did not significantly change. The frequency and intensity of dust weather were major factors affecting the concentration of dust aerosol PMI0 in the desert. (2) The mass concentration of PM10 had significant regional distribution characteris- tics, and the mass concentration at the eastern edge of Taklimakan, Kumul, was the lowest; second was the southern edge of the desert, Hotan; and the highest was in the hinterland of the desert, Tazhong. (3) High values of PM10 mass concentration in Kumul was from March to September each year; high values of PM^0 mass concentration in Tazhong and Hotan were distributed from March to August and the average concenlration changed from 500 to 1,000 gg/m3, respectively. (4) The average seasonal concentration changes of PM10 in Kumul, Tazhong and Hotan were: spring 〉 summer 〉 autumn 〉 winter; the highest average concentration of PMl0in Tazhong, was about 1,000 gg/m3 in spring and between 400 and 900 gg/m3 in summer, and the average concentration was lower in autumn and winter, basically between 200 and 400 gg/m3. (5) PMl0 concentration during the sandstorm season was just over two times the con- centration of the non-sandstorm season in Kumul, Tazhong and Hotan. The average concentrations of sandstorm season in Tazhong were 6.2 and 3.6 times the average concentrations of non-sandstorm season in 2004 and 2008, respectively. (6) The mass concentra- tion of PM10 had the following sequence during the dust weather: clear day 〈 floating dust 〈 floating and blowing dust 〈 sandstorm. The wind speed directly affects the concentration of PM10 in the atmosphere, the higher the wind speed, the higher the mass concen- tration. Temperature, relative humidity and bammelric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of PM~ 0 in the atmosphere.
基金supported by the National Natural Science Foundation of China(91644226)the National Key Research Project of China(2016YFA0602004)the Fundamental Research Funds of Chinese Academy of Meteorological Sciences(2017Y005)
文摘Hotan Prefecture is located at the southwestern edge of Taklimakan Desert, the world's largest shifting sand desert, of China. The desert is one of the main sources for frequent sand-dust weather events which strongly affect the air quality of Hotan Prefecture. Although this region is characterized by the highest annual mean PMlo concentration values that are routinely recorded by environmental monitoring stations across China, both this phenomenon and its underlying causes have not been adequately addressed in previous researches. Reliable pollutant PM_10 data are currently retrieved using a tapered element oscillating microbalance (TEOM) 1400a, a direct real-time monitor, while additional concentration values including for PM_2.5, sulfur dioxide (SO_2), nitrogen dioxide (NO_2), carbon monoxide (CO) and ozone (O_3) have been collected in recent years by the Hotan Environmental Monitoring Station. Based on these data, this paper presents a comparison of the influences of different kinds of sand-dust weather events on PM_10 (or PM_2.5) as well as the concentrations of other gaseous pollutants in Hotan Prefecture. It is revealed that the highest monthly average PM_10 concentrations are observed in the spring because of the frequent occurrence of three distinct kinds of sand-dust weather events at this time, including dust storms, blowing dust and floating dust. The floating dust makes the most significant contribution to PM_10 (or PM_2.5) concentration in this region, a result that differs from eastern Chinese cities where the heaviest PM_10 pollution occurs usually in winter and air pollution results from the excess emission of local anthropogenic pollutants. It is also shown that PM_10 concentration varies within wpical dust storms. PM_10 concentrations vary among 20 dust storm events within Hotan Prefecture, and the hourly mean concentrations tend to sharply increase initially then slowly decreasing over time. Data collected from cities in eastern China show the opposite with the hourly mean PM_10 (or PM_2.5) concentration tending to slowly increase then sharply decrease during heavy air pollution due to the excess emission of local anthropogenic pollutants. It is also found that the concentration of gaseous pollutants during sand-dust weather events tends to be lower than those cases under clear sky conditions. This indicates that these dust events effectively remove and rapidly diffuse gaseous pollutants. The analysis also shows that the concentration of SO_2 decreases gradually at the onset of all three kinds of sand-dust weather events because of rapidly increasing wind velocity and the development of favorable atmospheric conditions for diffusion. In contrast, changes in O_3 and NO_2 concentrations conformed to the opposite pattern during all three kinds of sand-dust weather events within this region, implying the inter transformation of these gas species during these events.
基金supported by Natural Science Foundation of China(Nos.41175017,41175140)China Special Fund for Meteorological Research in the Public Interest(Nos.GYHY201006012,GYHY201106025)
文摘Based on automatic continuous surface ozone concentration observation data from June 10, 2010 to March 20, 2012 in the Taklimakan Desert hinterland, combined with corresponding meteorological data, the temporal, seasonal and daily variation characteristics of surface ozone concentrations under different weather conditions were analyzed. At the same time, the main fac- tors affecting ozone variation are discussed. Results show that: (1) Daily variation of ozone concentration was characterized by one obvious peak, with gentle changes during the night and dramatic changes during the day. The lowest concentration was at 09:00 and the highest was at 18:00. Compared to urban areas, there was a slight time delay. (2) Ozone concentration variation had a weekend effect phenomenon. Weekly variation of ozone concentration decreased from Monday to Wednesday with the lowest in Wednesday, and increased after Thursday with the highest in Sunday. (3) The highest monthly average concentration was 89.6 I.tg/m3 in June 2010, and the lowest was 32.0 ~g/m3 in January 2012. Ozone concentration reduced month by month from June to December in 2010. (4) Ozone concentration in spring and summer was higher than in autumn and winter. The variation trend agreed with those in other large and medium-sized cities. (5) Under four different types of weather, daily ozone concentration var- ied most dramatically in sunny days, followed by slight variation in rain days, and varied gently in cloudy days. Ozone concentra- tion varied inconspicuously before a sandstorm appearance, and dropped rapidly at the onset of a sandstorm. (6) Daily variation of radiation was also characterized by a single peak, and the variation was significantly earlier than ozone concentration variation. Sun radiation intensity had a direct influence on the photochemical reaction speed, leading to variation of ozone concentration. (7) Daily average ozone concentration in dust weather was higher than in slight rain and clear days. The variation of near surface ozone concentration could also be affected by meteorological factors such as relative humidity, wind speed, wind direction and sunshine hours. Thus, numerous factors working together led to ozone pollution.
基金supported by the National Natural Science Foundation of China (41775030, 41575008, 11302111, 11562017)the China Research Foundation for Desert Meteorology (SQJ2014003)the China Postdoctoral Science Foundation
文摘Sand-dust storm is a type of disastrous weather, typically occurring in arid and semi-arid climates. This study selected a region in the hinterlands of the Taklimakan Desert, called the Tazhong region, as the experimental area to quantitatively estimate the particle concentrations of sand-dust storms using the boundary layer wind-profiling radar. We thoroughly studied the radar echo signals and reflectivity factor features during the sand-dust storms. The results indicate that(1) under sand-dust storm conditions, boundary layer wind-profiling radar cannot capture the complete information regarding horizontal wind velocity and direction, but it can obtain the backscattering intensity of sand-dust storms; and(2) during sand-dust storms particle size distributions in the surface layer closely resemble log-normal distributions, with sand-dust particles sizes of 90–100 μm accounting for the maximum particle probability. Retrieved particle size distributions at heights of 600, 800, and 1000 m follow log-normal distributions, and the expected value of particle diameter decreases gradually with increasing height. From the perspective of orders of magnitude, the retrieved results for particle number concentrations and mass concentrations are consistent with previous aircraft-detected results, indicating that it is basically feasible to use boundary layer wind-profiling radar to quantitatively detect the particle concentrations of dust storms.
文摘作为中国最大和世界第二大流动沙漠,塔克拉玛干沙漠是我国主要的沙尘暴中心之一,其沙尘天气对当地及周边地区的生产生活会造成巨大影响。利用VOSviewer可视化分析工具,以中国知网(CNKI)数据库和Web of Science核心数据库中塔克拉玛干沙漠沙尘暴相关355篇文献为对象,从发文时间、作者、关键词、期刊来源与学科分布、发文机构(国家)等方面进行可视化与计量分析,进而综述了塔克拉玛干沙漠沙尘暴研究的现状及发展趋势和未来展望。结果表明:塔克拉玛干沙漠沙尘暴研究的中英文文献产出分为2个阶段,即1996—2005年为起步阶段,2006—2020年为稳步发展阶段;塔克拉玛干沙漠沙尘暴的成因、传输特征及发展规律、沙尘暴过程数值模拟预报研究、沙尘天气及沙漠气象等问题受到了国内外众多学者的高度关注;相关论文主要发表在《沙漠与绿洲气象》、《中国沙漠》及Journal of Geophysical Research Atmospheres等期刊,其中《沙漠与绿洲气象》为中文发文量最多的核心期刊,Journal of Geophysical Research Atmospheres为SCI发文量最高的期刊。
基金supported by the National Natural Science Foundation of China (Grant No. 41405003)Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 41521004)+1 种基金the Programme of Introducing Talents of Discipline to Universities (Grant No. B 13045)the Foundation of Key Laboratory for Semi-Arid Climate Change of the Ministry of Education in Lanzhou University
文摘The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically,the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr.1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m.2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore,the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively.