Reactive distillation and dividing wall column distillation are two kinds of effective separation technologies,and their integrated configuration,reactive dividing wall column(RDWC),presents attractive advantages.In t...Reactive distillation and dividing wall column distillation are two kinds of effective separation technologies,and their integrated configuration,reactive dividing wall column(RDWC),presents attractive advantages.In this study,the rigorous simulation of RDWC for methyl acetate hydrolysis is performed,and sensitivity analysis is conducted to obtain the minimum reboiler duty.Then a comparison is made between the conventional process and RDWC process,and it shows that 20.1% energy savings can be achieved by RDWC process.In addition,the dynamic characteristic of RDWC is studied and an effective control strategy is proposed.The simple PI control scheme with three temperature loops can obtain reasonable control performance and maintain products at desired purities.It is proved that this RDWC process is an energy efficiency alternative with good controllability.展开更多
Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photoca...Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed.展开更多
A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m...A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.展开更多
In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertaintie...In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controlled output. Numerical examples are provided for illustration and comparison of the proposed conditions.展开更多
The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box...The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.展开更多
This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint...This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H_2 control and H_∞ control. Simulation is performed for all the approaches yielding good performance results.展开更多
A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input vari...A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.展开更多
This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “com...This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process.展开更多
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa...Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.展开更多
The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled...The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled systems, the PWM and the calculating delays modify the system characteristics in terms of frequency and phase, thus destabilizing the system and degrading the VR-AD performances, mainly in low switching frequencies. Moreover, the stability of the system is greatly affected under weak grid operation characterized by large grid impedance variation. This paper solves these problems by proposing a systematic, robust and optimized design procedure of voltage oriented PI control(VOC) with VRAD. The considered design procedure ensures robust control(sufficient stability margins) and high quality of grid current(reduced steady-state error and minimized THD value) despite the negative impact of digital time delay, grid impedance variation and filter parameters change. Simulation and experimental results are presented to show robustness and efficiency of the suggested design procedure.展开更多
Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dy...Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.展开更多
An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm...An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm is developed by using the dissipation theory, such that the resulting dosed-loop system is both strictly dissipative and asymptotically adaptively stable for all admissible uncertainties. Also, it is able to steer an underactuated ship along a prescribed straight path with ultimate bounds under external disturbances induced by wave, wind and ocean current. When there are no disturbances, the straight path control can be implemented in a locally asymptotically stable manner. Simulation results on an ocean-going training ship ‘YULONG' are presented to validate the effectiveness of the algorithm.展开更多
This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrog...This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.展开更多
The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynam...The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.展开更多
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation...The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time展开更多
The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying...The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.展开更多
Rahim and Banerjee [1] developed a general model for the optimal design of x-control charts. The model minimizes the expected cost per unit time. The heart of the model is a theorem that derives the expected total cos...Rahim and Banerjee [1] developed a general model for the optimal design of x-control charts. The model minimizes the expected cost per unit time. The heart of the model is a theorem that derives the expected total cost and the expected cycle length. In this paper an alternative simple proof for the theorem is provided based on mathematical induction.展开更多
This paper presents the design of a high performance robust resonant controller for the islanded single-phase microgrid operation on different loads conditions. The design of the controller is done using the results o...This paper presents the design of a high performance robust resonant controller for the islanded single-phase microgrid operation on different loads conditions. The design of the controller is done using the results of Negative Imaginary approach. The performance of the proposed controller has been found much effective to track the instantaneous reference grid voltage. The simulation work has been done with the help of MATLAB/SimPower System toolbox. This shows that the proposed controller provides effective control of voltage against the uncertain load conditions.展开更多
基金Supported by the National Natural Science Foundation of China(No.21276279No.21476261)+1 种基金the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.15CX06042A)
文摘Reactive distillation and dividing wall column distillation are two kinds of effective separation technologies,and their integrated configuration,reactive dividing wall column(RDWC),presents attractive advantages.In this study,the rigorous simulation of RDWC for methyl acetate hydrolysis is performed,and sensitivity analysis is conducted to obtain the minimum reboiler duty.Then a comparison is made between the conventional process and RDWC process,and it shows that 20.1% energy savings can be achieved by RDWC process.In addition,the dynamic characteristic of RDWC is studied and an effective control strategy is proposed.The simple PI control scheme with three temperature loops can obtain reasonable control performance and maintain products at desired purities.It is proved that this RDWC process is an energy efficiency alternative with good controllability.
基金supported by the National Natural Science Foundation of China(21862002,41663012)the Innovation Team Project of North Minzu University(YCX18082)the Scientific Research Project of North Minzu University(2016 HG-KY 06)~~
文摘Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed.
基金Project(2009AA04Z216) supported in part by the National High Technology Research and Development Program of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Program of ChinaProject(20092302120068) supported by the Doctoral Program of Higher Education of China
文摘A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.
文摘In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controlled output. Numerical examples are provided for illustration and comparison of the proposed conditions.
文摘The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.
基金supported by the Deanship of Scientific Research(DSR)at the King Fahd University of Petroleum and Minerals(KFUPM)(141048)
文摘This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H_2 control and H_∞ control. Simulation is performed for all the approaches yielding good performance results.
基金supported by the National Natural Science Foundation of China (No.70471087)China Postdoctoral Science Foundation Funded Project(No.20080430929)Liaoning Province Education Bureau Foundation (No.20060106)
文摘A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.
基金supported by National Outstanding Youth Science Foundation(61125306)National Natural Science Foundation of Major Research Plan(91016004,61034002)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China(20110092110020)Open Fund of Key Laboratory of Measurement and Control of Complex Systems of Engineering(Southeast University)Ministry of Education(MCCSE2013B01)
文摘This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process.
文摘Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.
基金Supported by National Nature Science Foundation of China (61074068, 60774009, 61034007), and the Research Fund for the Doc- toral Program of Chinese Higher Education (200804220028)
基金supported by the Tunisian Ministry of High Education and Research under Grant LSE-ENIT-LR11ES15
文摘The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled systems, the PWM and the calculating delays modify the system characteristics in terms of frequency and phase, thus destabilizing the system and degrading the VR-AD performances, mainly in low switching frequencies. Moreover, the stability of the system is greatly affected under weak grid operation characterized by large grid impedance variation. This paper solves these problems by proposing a systematic, robust and optimized design procedure of voltage oriented PI control(VOC) with VRAD. The considered design procedure ensures robust control(sufficient stability margins) and high quality of grid current(reduced steady-state error and minimized THD value) despite the negative impact of digital time delay, grid impedance variation and filter parameters change. Simulation and experimental results are presented to show robustness and efficiency of the suggested design procedure.
基金Key Science-Technology Foundation of Hunan Province, China (No. 05GK2007).
文摘Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.
文摘An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm is developed by using the dissipation theory, such that the resulting dosed-loop system is both strictly dissipative and asymptotically adaptively stable for all admissible uncertainties. Also, it is able to steer an underactuated ship along a prescribed straight path with ultimate bounds under external disturbances induced by wave, wind and ocean current. When there are no disturbances, the straight path control can be implemented in a locally asymptotically stable manner. Simulation results on an ocean-going training ship ‘YULONG' are presented to validate the effectiveness of the algorithm.
文摘This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.
基金supported by Hunan Provincial Innovation Foundation for Postgraduate(Grant No. CX2011B005)National University of Defense Technology Innovation Foundation for Postgraduate, China(GranNo. B110105)
文摘The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.
文摘The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time
文摘The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.
文摘Rahim and Banerjee [1] developed a general model for the optimal design of x-control charts. The model minimizes the expected cost per unit time. The heart of the model is a theorem that derives the expected total cost and the expected cycle length. In this paper an alternative simple proof for the theorem is provided based on mathematical induction.
文摘This paper presents the design of a high performance robust resonant controller for the islanded single-phase microgrid operation on different loads conditions. The design of the controller is done using the results of Negative Imaginary approach. The performance of the proposed controller has been found much effective to track the instantaneous reference grid voltage. The simulation work has been done with the help of MATLAB/SimPower System toolbox. This shows that the proposed controller provides effective control of voltage against the uncertain load conditions.