Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as th...This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as the epidermis of apples, with SEM (Scanning Electronic Microscope) showed that natural structures’ pores can be classified into uniform pores, gradient pores and multi pores from the viewpoint of the distribution variation of pore density, size and geometry. Furthermore, an optimal design of porous bearings was for the first time developed based on the gradient configuration of natural materials. The bionic design of porous structures is predicted to be widely developed and applied in the fields of materials and mechanical engineering in the future.展开更多
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent...Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.展开更多
Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for m...Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices.展开更多
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect...Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.展开更多
Today,on the one hand,while the traditional design process continues,on the other hand,digital design systems along with advances in computer technologies continue to present designers with new and effective ideas.Par...Today,on the one hand,while the traditional design process continues,on the other hand,digital design systems along with advances in computer technologies continue to present designers with new and effective ideas.Parametric design is preferred by designers for its relationality,contributing toward versatility,ensuring flexibility,simplifying diversification,and for presenting programmatic solutions.As is seen in a number of areas,we have also begun to encounter the use of parametric designs produced with parametric design systems and wooden materials in urban landscaping.The purpose of this study is to examine the upper cover application and seating elements generated by taking advantage of parametric designs from wooden construction materials in urban landscaping areas,and examine the impact of wooden material characteristics while generating behavior and parametric structures of technologies.After researching parametric design and wooden material concepts,an attempt was made to reach conclusions through analyses conducted by examining parametric wooden designed pavilion and seating element specimens applied in various regions of the world.展开更多
This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, an...This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, and hybrid structures along the radial and longitudinal directions;materials and manufacturing techniques, such as tissue engineering and the use of textiles or their combinations;and the corresponding mechanical behaviours of composite vascular grafts in terms of their physical–mechanical properties, especially their stress–strain relationships and elastic recovery. The role of computational studies is discussed with respect to optimizing the geometrics designs and the corresponding mechanical behaviours to satisfy specialized applications, such as those for the aorta and its subparts. Natural and synthetic endothelial materials yield improvements in the mechanical and biological compliance of composite graft surfaces with host arteries. Moreover,the diameter, wall thickness, stiffness, compliance, tensile strength, elasticity, and burst strength of the graft matrix are determined depending on the application and the patient. For composite vascular grafts, hybrid architectures are recommended featuring multiple layers, dimensions, and materials to achieve the desired optimal flexibility and function for complying with user-specific requirements. Rapidly emerging artificial intelligence and big data techniques for diagnostics and the threedimensional(3D) manufacturing of vascular grafts will likely yield highly compliant, subject-specific, long-lasting, and economical vascular grafts in the near-future.展开更多
Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mecha...Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mechanical properties of ice in the region are directly related to the structure design, operation and safety. In this paper, the sea ice force acting on the structure, the physical mechanical properties of ice and the selection of parameters in calculation are discussed. Some suggestions are proposed as to the calculation of various kinds of ice loads acting on the structure.展开更多
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat...Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.展开更多
Traditional materials discovery is in ‘trial-and-error’ mode, leading to the issues of low-efficiency, high-cost, and unsustainability in materials design. Meanwhile, numerous experimental and computational trials a...Traditional materials discovery is in ‘trial-and-error’ mode, leading to the issues of low-efficiency, high-cost, and unsustainability in materials design. Meanwhile, numerous experimental and computational trials accumulate enormous quantities of data with multi-dimensionality and complexity, which might bury critical ‘structure–properties’ rules yet unfortunately not well explored. Machine learning(ML), as a burgeoning approach in materials science, may dig out the hidden structure–properties relationship from materials bigdata, therefore, has recently garnered much attention in materials science. In this review, we try to shortly summarize recent research progress in this field, following the ML paradigm:(i) data acquisition →(ii) feature engineering →(iii) algorithm →(iv) ML model →(v) model evaluation →(vi) application. In section of application, we summarize recent work by following the ‘material science tetrahedron’:(i) structure and composition →(ii) property →(iii) synthesis →(iv) characterization, in order to reveal the quantitative structure–property relationship and provide inverse design countermeasures. In addition, the concurrent challenges encompassing data quality and quantity, model interpretability and generalizability, have also been discussed. This review intends to provide a preliminary overview of ML from basic algorithms to applications.展开更多
The integration of additive manufacturing(AM)in design and engineering has prompted a wide spectrum of research efforts,involving topologically optimized solid/lattice structures,multimaterial structures,bioinspired o...The integration of additive manufacturing(AM)in design and engineering has prompted a wide spectrum of research efforts,involving topologically optimized solid/lattice structures,multimaterial structures,bioinspired organic structures,and multiscale structures,to name a few.However,except for obvious cases,very little attention has been given to the design and printing of more complex three-dimensional(3D)hollow structures or folded/creased structures.One of the main reasons is that such complex open or closed 3D cavities and regular/freeform folds generally lead to printing difficulties from support-structure-related issues.To address this barrier,this paper aims to investigate four-dimensional(4D)printing as well as origami-based design as an original research direction to design and build 3D support-free hollow structures.This work consists of describing the rough 3D hollow structures in terms of two-dimensional(2D)printed origami precursor layouts without any support structure.Such origami-based definitions are then embodied with folding functions that can be actuated and fulfilled by 3D printed smart materials.The desired 3D shape is then built once an external stimulus is applied to the active materials,therefore ensuring the transformation of the 2D origami layout to 3D structures.To demonstrate the relevance of the proposal,some illustrative cases are introduced.展开更多
In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (>1400 ℃). To provide a balance of mechanical and en...In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (>1400 ℃). To provide a balance of mechanical and environmental properties, Nb-Si composites are typically alloyed with Ti and Cr, and Mo-Si-B composites are alloyed with Ti. Phase diagrams of Nb-Cr-Ti-Si and Mo-Si-B-Ti, as prerequisite knowledge for advanced materials design and processing development, are critically needed. The phase diagrams in the metal-rich regions of multicomponent Nb-Cr-Ti-Si and Mo-Si-B-Ti were rapidly established using the Calphad (Calculation of phase diagram) approach coupled with key experiments. The calculated isotherms, isopleths, and solidification paths were validated by experimental work. The important heterogeneous multiphase equilibria in both quaternary systems identified will offer engineers the opportunity to develop materials with a balance of properties for high-temperature applications.展开更多
The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strat...The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.展开更多
The discovery of novel materials with desired properties is essential to the advancements of energy-related technologies.Despite the rapid development of computational infrastructures and theoretical approaches,progre...The discovery of novel materials with desired properties is essential to the advancements of energy-related technologies.Despite the rapid development of computational infrastructures and theoretical approaches,progress so far has been limited by the empirical and serial nature of experimental work.Fortunately,the situation is changing thanks to the maturation of theoretical tools such as density functional theory,high-throughput screening,crystal structure prediction,and emerging approaches based on machine learning.Together these recent innovations in computational chemistry,data informatics,and machine learning have acted as catalysts for revolutionizing material design and hopefully will lead to faster kinetics in the development of energy-related industries.In this report,recent advances in material discovery methods are reviewed for energy devices.Three paradigms based on empiricism-driven experiments,database-driven high-throughput screening,and data informatics-driven machine learning are discussed critically.Key methodological advancements involved are reviewed including high-throughput screening,crystal structure prediction,and generative models for target material design.Their applications in energy-related devices such as batteries,catalysts,and photovoltaics are selectively showcased.展开更多
A first-principles method is applied to comparatively study the stability of lithium metal oxides with layered or spinel structures to predict the most energetically favorable structure for different compositions. The...A first-principles method is applied to comparatively study the stability of lithium metal oxides with layered or spinel structures to predict the most energetically favorable structure for different compositions. The binding and reaction energies of the real or virtual layered LiM02 and spinel LiM204 (M = Sc42u, Y-Ag, Mg-Sr, and Al-In) are calculated. The effect of element M on the structural stability, espe- cially in the case of multiple-cation compounds, is discussed herein. The calculation results indicate that the phase stability depends on both the binding and reaction energies. The oxidation state of element M also plays a role in determining the dominant structure, i.e., layered or spinel phase. Moreover, calculation-based theoretical predictions of the phase stability of the doped materials agree with the previously re- ported experimental data.展开更多
In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are foun...In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations.展开更多
Flexible lithium-ion batteries(FLBs)are of critical importance to the seamless power supply of flexible and wearable electronic devices.However,the simultaneous acquirements of mechanical deformability and high energy...Flexible lithium-ion batteries(FLBs)are of critical importance to the seamless power supply of flexible and wearable electronic devices.However,the simultaneous acquirements of mechanical deformability and high energy density remain a major challenge for FLBs.Through billions of years of evolutions,many plants and animals have developed unique compositional and structural characteristics,which enable them to have both high mechanical deformability and robustness to cope with the complex and stressful environment.Inspired by nature,many new materials and designs emerge recently to achieve mechanically flexible and high storage capacity of lithiumion batteries at the same time.Here,we summarize these novel FLBs inspired by natural and biological materials and designs.We first give a brief introduction to the fundamentals and challenges of FLBs.Then,we highlight the latest achievements based on nature inspiration,including fiber-shaped FLBs,origami and kirigami-derived FLBs,and the nature-inspired structural designs in FLBs.Finally,we discuss the current status,remaining challenges,and future opportunities for the development of FLBs.This concise yet focused review highlights current inspirations in FLBs and wishes to broaden our view of FLB materials and designs,which can be directly“borrowed”from nature.展开更多
Product design plays a decisive role in material resource consumption in manufacturing systems. So it is significant to study optimal utilization of material resources of manufacturing system from the perspective of p...Product design plays a decisive role in material resource consumption in manufacturing systems. So it is significant to study optimal utilization of material resources of manufacturing system from the perspective of product design. This paper firstly defines concept of product design, then after an analysis of design objectives the author proposes a target system of product design with three subsystems: structural system, functional system, and technical system. Finally, a product design system on Architectural Metal Structure Enterprises is developed and used in light of the great consumption of material resources in Metal Structure Enterprises. The system has got an obvious effect on improving comprehensive optimal using rate of material resources of enterprises, reducing design cycle, improving management of enterprises.展开更多
The structural and electronic properties of Li2Mg(NH)2 for hydrogen storage have been studied by first-principles calculation. The optimal unit cell parameters and the distance of N-H are determined, which are in go...The structural and electronic properties of Li2Mg(NH)2 for hydrogen storage have been studied by first-principles calculation. The optimal unit cell parameters and the distance of N-H are determined, which are in good agreement with the experimental data. The bulk modules and the energies of zero pressure are obtained by using Murnaghan equation of states. The results show that the α-Li2Mg(NH)2 is a ground state configuration. The overlap population analysis shows that the N-Li/Mg ionic characteristics and N-H interaction of αphase are weaker than those of βphase. The valence band is dominated by the presence of N s and p states, hybridized with the H s state.展开更多
The development of novel organic electrode materials is of great significance for improving the reversible capacity and cycle stability of rechargeable batteries.Before practical application,it is essential to charact...The development of novel organic electrode materials is of great significance for improving the reversible capacity and cycle stability of rechargeable batteries.Before practical application,it is essential to characterize the electrode materials to study their structures,redox mechanisms and electrochemical performances.In this review,the common characterization methods that have been adopted so far are summarized from two aspects:experimental characterization and theoretical calculation.The experimental characterization is introduced in detail from structural characterization,electrochemical characterization and electrode reaction chara cterization.The experimental purposes and working principles of various experimental characterization methods are briefly illustrated.As the auxilia ry means,theoretical calculation provides the theoretical basis for characterizing the electrochemical reaction mechanism of organic electrode materials.Through these characterizations,we will have a deep understanding about the material structures,electrochemical redox mechanisms,electrochemical properties and the relationships of structure-property.It is hoped that this review would help researchers to select the suitable characterization methods to analyze the structures and performances of organic electrode materials quickly and effectively.展开更多
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
文摘This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as the epidermis of apples, with SEM (Scanning Electronic Microscope) showed that natural structures’ pores can be classified into uniform pores, gradient pores and multi pores from the viewpoint of the distribution variation of pore density, size and geometry. Furthermore, an optimal design of porous bearings was for the first time developed based on the gradient configuration of natural materials. The bionic design of porous structures is predicted to be widely developed and applied in the fields of materials and mechanical engineering in the future.
基金supported by the National Natural Science Foundation of China,China(52203066,51973157,51673148 and 51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金China Postdoctoral Science Foundation Grant,China(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal College Student’Innovation And Entrepreneurship Training Program,China(202110058052)the National Innovation and Entrepreneurship Training Program for College Students,China(202110058017)。
文摘Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA17040506)the National Natural Science Foundation of China(62005148/12004235)+2 种基金The Open Competition Mechanism to Select The Best Candidates Project in Jinzhong Science and Technology Bureau (J202101)the DNL Cooperation Fund CAS(DNL180311)the 111 Project (B14041)
文摘Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 52064013, 52064014, 52072323 and 52122211)the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.
文摘Today,on the one hand,while the traditional design process continues,on the other hand,digital design systems along with advances in computer technologies continue to present designers with new and effective ideas.Parametric design is preferred by designers for its relationality,contributing toward versatility,ensuring flexibility,simplifying diversification,and for presenting programmatic solutions.As is seen in a number of areas,we have also begun to encounter the use of parametric designs produced with parametric design systems and wooden materials in urban landscaping.The purpose of this study is to examine the upper cover application and seating elements generated by taking advantage of parametric designs from wooden construction materials in urban landscaping areas,and examine the impact of wooden material characteristics while generating behavior and parametric structures of technologies.After researching parametric design and wooden material concepts,an attempt was made to reach conclusions through analyses conducted by examining parametric wooden designed pavilion and seating element specimens applied in various regions of the world.
基金the Innovation and Technology Fund-The Hong Kong Research Institute of Textiles and Apparel (ITF-HKRITA, PRP/059/19TI)the Department General Research Fund, the Hong Kong Polytechnic University (G-UAHB) for supporting this study。
文摘This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, and hybrid structures along the radial and longitudinal directions;materials and manufacturing techniques, such as tissue engineering and the use of textiles or their combinations;and the corresponding mechanical behaviours of composite vascular grafts in terms of their physical–mechanical properties, especially their stress–strain relationships and elastic recovery. The role of computational studies is discussed with respect to optimizing the geometrics designs and the corresponding mechanical behaviours to satisfy specialized applications, such as those for the aorta and its subparts. Natural and synthetic endothelial materials yield improvements in the mechanical and biological compliance of composite graft surfaces with host arteries. Moreover,the diameter, wall thickness, stiffness, compliance, tensile strength, elasticity, and burst strength of the graft matrix are determined depending on the application and the patient. For composite vascular grafts, hybrid architectures are recommended featuring multiple layers, dimensions, and materials to achieve the desired optimal flexibility and function for complying with user-specific requirements. Rapidly emerging artificial intelligence and big data techniques for diagnostics and the threedimensional(3D) manufacturing of vascular grafts will likely yield highly compliant, subject-specific, long-lasting, and economical vascular grafts in the near-future.
文摘Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mechanical properties of ice in the region are directly related to the structure design, operation and safety. In this paper, the sea ice force acting on the structure, the physical mechanical properties of ice and the selection of parameters in calculation are discussed. Some suggestions are proposed as to the calculation of various kinds of ice loads acting on the structure.
文摘Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.
基金Project support by the National Natural Science Foundation of China(Grant Nos.11674237 and 51602211)the National Key Research and Development Program of China(Grant No.2016YFB0700700)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaChina Post-doctoral Foundation(Grant No.7131705619).
文摘Traditional materials discovery is in ‘trial-and-error’ mode, leading to the issues of low-efficiency, high-cost, and unsustainability in materials design. Meanwhile, numerous experimental and computational trials accumulate enormous quantities of data with multi-dimensionality and complexity, which might bury critical ‘structure–properties’ rules yet unfortunately not well explored. Machine learning(ML), as a burgeoning approach in materials science, may dig out the hidden structure–properties relationship from materials bigdata, therefore, has recently garnered much attention in materials science. In this review, we try to shortly summarize recent research progress in this field, following the ML paradigm:(i) data acquisition →(ii) feature engineering →(iii) algorithm →(iv) ML model →(v) model evaluation →(vi) application. In section of application, we summarize recent work by following the ‘material science tetrahedron’:(i) structure and composition →(ii) property →(iii) synthesis →(iv) characterization, in order to reveal the quantitative structure–property relationship and provide inverse design countermeasures. In addition, the concurrent challenges encompassing data quality and quantity, model interpretability and generalizability, have also been discussed. This review intends to provide a preliminary overview of ML from basic algorithms to applications.
基金the Ministère de l’Enseignement Supérieur et de la Recherche, the French ‘Investissements d’Avenir’ program, project ISITE-BFC (contract ANR-15-IDEX-0003)China Scholarship Council as the main financial supports of this research program
文摘The integration of additive manufacturing(AM)in design and engineering has prompted a wide spectrum of research efforts,involving topologically optimized solid/lattice structures,multimaterial structures,bioinspired organic structures,and multiscale structures,to name a few.However,except for obvious cases,very little attention has been given to the design and printing of more complex three-dimensional(3D)hollow structures or folded/creased structures.One of the main reasons is that such complex open or closed 3D cavities and regular/freeform folds generally lead to printing difficulties from support-structure-related issues.To address this barrier,this paper aims to investigate four-dimensional(4D)printing as well as origami-based design as an original research direction to design and build 3D support-free hollow structures.This work consists of describing the rough 3D hollow structures in terms of two-dimensional(2D)printed origami precursor layouts without any support structure.Such origami-based definitions are then embodied with folding functions that can be actuated and fulfilled by 3D printed smart materials.The desired 3D shape is then built once an external stimulus is applied to the active materials,therefore ensuring the transformation of the 2D origami layout to 3D structures.To demonstrate the relevance of the proposal,some illustrative cases are introduced.
文摘In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (>1400 ℃). To provide a balance of mechanical and environmental properties, Nb-Si composites are typically alloyed with Ti and Cr, and Mo-Si-B composites are alloyed with Ti. Phase diagrams of Nb-Cr-Ti-Si and Mo-Si-B-Ti, as prerequisite knowledge for advanced materials design and processing development, are critically needed. The phase diagrams in the metal-rich regions of multicomponent Nb-Cr-Ti-Si and Mo-Si-B-Ti were rapidly established using the Calphad (Calculation of phase diagram) approach coupled with key experiments. The calculated isotherms, isopleths, and solidification paths were validated by experimental work. The important heterogeneous multiphase equilibria in both quaternary systems identified will offer engineers the opportunity to develop materials with a balance of properties for high-temperature applications.
文摘The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.
文摘The discovery of novel materials with desired properties is essential to the advancements of energy-related technologies.Despite the rapid development of computational infrastructures and theoretical approaches,progress so far has been limited by the empirical and serial nature of experimental work.Fortunately,the situation is changing thanks to the maturation of theoretical tools such as density functional theory,high-throughput screening,crystal structure prediction,and emerging approaches based on machine learning.Together these recent innovations in computational chemistry,data informatics,and machine learning have acted as catalysts for revolutionizing material design and hopefully will lead to faster kinetics in the development of energy-related industries.In this report,recent advances in material discovery methods are reviewed for energy devices.Three paradigms based on empiricism-driven experiments,database-driven high-throughput screening,and data informatics-driven machine learning are discussed critically.Key methodological advancements involved are reviewed including high-throughput screening,crystal structure prediction,and generative models for target material design.Their applications in energy-related devices such as batteries,catalysts,and photovoltaics are selectively showcased.
基金financially supported by the National High Technology Research Development Program of China (No. 2013AA050901)
文摘A first-principles method is applied to comparatively study the stability of lithium metal oxides with layered or spinel structures to predict the most energetically favorable structure for different compositions. The binding and reaction energies of the real or virtual layered LiM02 and spinel LiM204 (M = Sc42u, Y-Ag, Mg-Sr, and Al-In) are calculated. The effect of element M on the structural stability, espe- cially in the case of multiple-cation compounds, is discussed herein. The calculation results indicate that the phase stability depends on both the binding and reaction energies. The oxidation state of element M also plays a role in determining the dominant structure, i.e., layered or spinel phase. Moreover, calculation-based theoretical predictions of the phase stability of the doped materials agree with the previously re- ported experimental data.
基金the Higher Education Commission of Pakistan for partial funding.
文摘In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations.
基金National Nature Science Foundation of China,Grant/Award Numbers:21875040,21905051Macao Science and Technology Development Fund,Grant/Award Numbers:FDCT-0035/2019/AMJ,FDCT-0057/2019/A1,FDCT-0092/2019/A2pt>。
文摘Flexible lithium-ion batteries(FLBs)are of critical importance to the seamless power supply of flexible and wearable electronic devices.However,the simultaneous acquirements of mechanical deformability and high energy density remain a major challenge for FLBs.Through billions of years of evolutions,many plants and animals have developed unique compositional and structural characteristics,which enable them to have both high mechanical deformability and robustness to cope with the complex and stressful environment.Inspired by nature,many new materials and designs emerge recently to achieve mechanically flexible and high storage capacity of lithiumion batteries at the same time.Here,we summarize these novel FLBs inspired by natural and biological materials and designs.We first give a brief introduction to the fundamentals and challenges of FLBs.Then,we highlight the latest achievements based on nature inspiration,including fiber-shaped FLBs,origami and kirigami-derived FLBs,and the nature-inspired structural designs in FLBs.Finally,we discuss the current status,remaining challenges,and future opportunities for the development of FLBs.This concise yet focused review highlights current inspirations in FLBs and wishes to broaden our view of FLB materials and designs,which can be directly“borrowed”from nature.
基金Foundation item: Funded by China 863 R&D Program(No: 2002AA414080)
文摘Product design plays a decisive role in material resource consumption in manufacturing systems. So it is significant to study optimal utilization of material resources of manufacturing system from the perspective of product design. This paper firstly defines concept of product design, then after an analysis of design objectives the author proposes a target system of product design with three subsystems: structural system, functional system, and technical system. Finally, a product design system on Architectural Metal Structure Enterprises is developed and used in light of the great consumption of material resources in Metal Structure Enterprises. The system has got an obvious effect on improving comprehensive optimal using rate of material resources of enterprises, reducing design cycle, improving management of enterprises.
基金ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation of China (No.20876005). Computational resources were supported by the "Chemical GridProject" of Beijing University of Chemical Technology.
文摘The structural and electronic properties of Li2Mg(NH)2 for hydrogen storage have been studied by first-principles calculation. The optimal unit cell parameters and the distance of N-H are determined, which are in good agreement with the experimental data. The bulk modules and the energies of zero pressure are obtained by using Murnaghan equation of states. The results show that the α-Li2Mg(NH)2 is a ground state configuration. The overlap population analysis shows that the N-Li/Mg ionic characteristics and N-H interaction of αphase are weaker than those of βphase. The valence band is dominated by the presence of N s and p states, hybridized with the H s state.
基金the financial support of the National Natural Science Foundation of China(Nos.21875206,21403187)the Natural Science Foundation of Hebei Province(No.B2019203487)the open project in Key Lab Adv.Energy Mat.Chem.(Nankai University)。
文摘The development of novel organic electrode materials is of great significance for improving the reversible capacity and cycle stability of rechargeable batteries.Before practical application,it is essential to characterize the electrode materials to study their structures,redox mechanisms and electrochemical performances.In this review,the common characterization methods that have been adopted so far are summarized from two aspects:experimental characterization and theoretical calculation.The experimental characterization is introduced in detail from structural characterization,electrochemical characterization and electrode reaction chara cterization.The experimental purposes and working principles of various experimental characterization methods are briefly illustrated.As the auxilia ry means,theoretical calculation provides the theoretical basis for characterizing the electrochemical reaction mechanism of organic electrode materials.Through these characterizations,we will have a deep understanding about the material structures,electrochemical redox mechanisms,electrochemical properties and the relationships of structure-property.It is hoped that this review would help researchers to select the suitable characterization methods to analyze the structures and performances of organic electrode materials quickly and effectively.