To support modular fixture assembly design in virtual environment,a multi-view based modular fixture virtual assembly model is proposed.Instead of squeezing all assembly related information into a single model,three c...To support modular fixture assembly design in virtual environment,a multi-view based modular fixture virtual assembly model is proposed.Instead of squeezing all assembly related information into a single model,three complementary views of assembly model,element information,function and structure,and assembly relationship are proposed to be used.The first view contains the detailed element information,while the other two explicitly capture the hierarchical function relationships and mating relationships respectively.These views are complementary in the sense that each view only contains a specific aspect of assembly related information while together they include required assembly related information.The proposed assembly model is specialized to accommodate the features of modular fixture virtual assembly design and applied in our developed prototype system.展开更多
In times of digitalisation, visual assistance systems in assembly are increasingly important. The design of these assembly systems needs to be highly complex to meet the requirements. Due to the increasing number of v...In times of digitalisation, visual assistance systems in assembly are increasingly important. The design of these assembly systems needs to be highly complex to meet the requirements. Due to the increasing number of variants in production processes, as well as shorter innovation and product life cycles, assistance systems should improve quality and reduce complexity of assembly processes. However, many large kitchen manufacturers still assemble kitchen cabinets manually, due to the high variety of components, such as rails and fittings. This paper focuses on the analysis and evaluation of virtual assistance systems to improve quality and usability in individualised kitchen cabinet assembly processes at a large German manufacturer. A solution is identified and detailed.展开更多
Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system gen...Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system generates the assembly scheme using the case? based method, then assigns the design requirements into each component of the assembly. The detail design for each component can be performed under these design constraints. In order to practise concurrent design, the system sends the final design result to the upstream section and downstream section through PDM to achieve information sharing and integration.展开更多
A root hinge drive assembly is preferred in place of the classical viscous damper in a large solar array system.It has advantages including better deployment control and higher reliability.But the traditional single d...A root hinge drive assembly is preferred in place of the classical viscous damper in a large solar array system.It has advantages including better deployment control and higher reliability.But the traditional single degree of freedom model should be improved.A multiple degrees of freedom dynamics model is presented for the solar arrays deployment to guide the drive assembly design.The established model includes the functions of the torsion springs,the synchronization mechanism and the lock-up impact.A numerical computation method is proposed to solve the dynamics coupling problem.Then considering the drive torque requirement calculated by the proposed model,a root hinge drive assembly is developed based on the reliability engineering design methods,and dual actuators are used as a redundancy design.Pseudo-efficiency is introduced and the major factors influencing the(pseudo-)efficiency of the gear mechanism designed with high reduction ratio are studied for further test data analysis.A ground prototype deployment test is conducted to verify the capacity of the drive assembly.The test device consists of a large-area solar array system and a root hinge drive assembly.The RHDA development time is about 43 s.The theoretical drive torque is compared with the test values which are obtained according to the current data and the reduction efficiency analysis,and the results show that the presented model and the calibration methods are proper enough.展开更多
The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the ef...The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the effect of machine center elastic deformations on workspace volume. Therefore, a method called pre-deformation for assembly performance is presented. This method is technically based on the characteristics of machine tool assembly and collaborative computer-aided engineering (CAE) analysis. The research goal is to enhance assembly performance, including straightness, positioning, and angular errors, to realize the precision of the machine tool design. A vertical machine center is taken as an example to illustrate the proposed method. The concept of travel error is defined to obtain the law of the guide surface. The machine center assembly performance is analyzed under cold condition and thermal balance condition to establish the function of pre-deformation. Then, the guide surface in normal direction is processed with the pre-deformation function, and the machine tool assembly performance is measured using a laser interferometer. The measuring results show that the straightness deviation of the Z component in the Y-direction is 158.9% of the allowable value primarily because of the gravity of the spindle head, and the straightness of the X and Y components is minimal. When the machine tool is processed in pre-deformation, the straightness of the Z axis moving component is reduced to 91.2%. This research proposes a pre-deformation machine center assembly method which has sufficient capacity to improving assembly accuracy of machine centers.展开更多
Aiming at difficult sorting and retrieving complicated structure assembliesin assembly lib, a method for compartmentalizing assembly design resource by conceptual productstructure model is presented. The similar assem...Aiming at difficult sorting and retrieving complicated structure assembliesin assembly lib, a method for compartmentalizing assembly design resource by conceptual productstructure model is presented. The similar assembly retrieval mechanisms of symbol assembly relationgraph matching and symbol assembly relation graph similarity are discussed. The method is validatedby taking valve rod assemblies as example.展开更多
Cloud manufacturing is one of the three key technologies that enable intelligent manufacturing.This paper presents a novel attribute-based encryption(ABE)approach for computer-aided design(CAD)assembly models to effec...Cloud manufacturing is one of the three key technologies that enable intelligent manufacturing.This paper presents a novel attribute-based encryption(ABE)approach for computer-aided design(CAD)assembly models to effectively support hierarchical access control,integrity verification,and deformation protection for co-design scenarios in cloud manufacturing.An assembly hierarchy access tree(AHAT)is designed as the hierarchical access structure.Attribute-related ciphertext elements,which are contained in an assembly ciphertext(ACT)file,are adapted for content keys decryption instead of CAD component files.We modify the original Merkle tree(MT)and reconstruct an assembly MT.The proposed ABE framework has the ability to combine the deformation protection method with a content privacy of CAD models.The proposed encryption scheme is demonstrated to be secure under the standard assumption.Experimental simulation on typical CAD assembly models demonstrates that the proposed approach is feasible in applications.展开更多
Configuration design is an essential, creative and decision-making step m parallel manipulator design process, in which modeling and assembly are iterative and trivial. Combined approach with automatic parametric mode...Configuration design is an essential, creative and decision-making step m parallel manipulator design process, in which modeling and assembly are iterative and trivial. Combined approach with automatic parametric modeling and automatic assembly is proposed for parallel manipulator configuration design. The design process and key techniques, such as configuration design, configuration verification, poses calculation of all parts in parallel manipulator, virtual assembly and etc., are discussed and demonstrated by an example. A software package is developed for parallel manipulator configuration design based on the proposed method with Visual C++ and UG/OPEN on Unigraphics.展开更多
In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich ass...In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.展开更多
The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly ...The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.展开更多
By applying genetic engineering methodology into the incremental product growth design,a generic structural design approach is put forward,as well as an intelligent evolution strategy of the product units growth,which...By applying genetic engineering methodology into the incremental product growth design,a generic structural design approach is put forward,as well as an intelligent evolution strategy of the product units growth,which is based on the multilevel Decomposition and Reconstruction of product gene. To guarantee a successful transformation from functional requirement to geometry constraints between parts in the incremental growth design of mechanical product,the integrated design method incorporates the design requirements and assembly perspective into product genetic information. The mathematical model of state transition during incremental design process are given at first,based on which product can grow step by step from functional requirement to the final geometrical product structure automatically. And then,to quantify the measurement of assembly efficiency,a mathematical model as well as a technology to quantify assembly constraints was developed by application of some fuzzy logic algorithms. Finally,examples have been proved that the approach is promising.展开更多
Logic components are used to support the conceptual design Taking the stamping die structure as the research object,several logic components are defined for the conceptual die construction design A new method log...Logic components are used to support the conceptual design Taking the stamping die structure as the research object,several logic components are defined for the conceptual die construction design A new method logic assembly modeling is presented to satisfy the characteristic of the top down die design process Representing shapes and spatial relations in logic can provide a natural,intuitive method of developing complete computer systems for reasoning about die construction design at the conceptual stage This method can reflect the designer's thought clearly and provide the designer with a test bed for generating alternatives and performing reasoning work at the conceptual die design stage展开更多
The whole superconducting HT-7U Tokamak is a high-cost and large-scale complicated device. The assembly requirement of HT-7U device is arduous and strict. At present, there have been no guiding principle for the assem...The whole superconducting HT-7U Tokamak is a high-cost and large-scale complicated device. The assembly requirement of HT-7U device is arduous and strict. At present, there have been no guiding principle for the assembly of the device, but assembly simulation can help the engineer plan and make decision by an intuitional and visual way before its actual assembly. The problem is that which scheme is most suitable should be solved primarily. From current research situation and technology progress of assembly simulation, this paper explained and analyzed four kinds of technological schemes of assembly simulation in common use. Finally, we got the most feasible scheme that was suitable for HT-7U assembly simulation by comparing their technological issues and difficult points of simulation among the four kinds of feasible schemes.展开更多
Design for assembly (DFA) evaluation has preved to be a systematic approach in determining how well a product is designed from the point of view of assembly. Geometric feature, such as symmetry, is an important factor...Design for assembly (DFA) evaluation has preved to be a systematic approach in determining how well a product is designed from the point of view of assembly. Geometric feature, such as symmetry, is an important factor when evaluating the assemblability of a part in it. But the automated detection of symmetry has always been considered to be a difficult problem which requires great effort. Proposed here is a new method for part symmetry automated recognition. The method is based on ray detecting theory and can effectively recognize the symmetry of parts with various shapes. It is of great importance to linking together DFA evaluation procedure with CAD model.展开更多
According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror ...According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.展开更多
A versatile and reliable approach is created to fabricate wafer-scale colloidal crystal that consists of a monolayer of hexagonally close-packed polystyrene (PS) spheres. Making wafer-scale colloidal crystal is usua...A versatile and reliable approach is created to fabricate wafer-scale colloidal crystal that consists of a monolayer of hexagonally close-packed polystyrene (PS) spheres. Making wafer-scale colloidal crystal is usually challenging, and it lacks a general theoretical guidance for experimental approaches. To obtain the optimal conditions for self-assembly, a systematic statistical design and analysis method is utilized here, which applies the pick-the-winner rule. This new method combines spin-coating and thermal treatment, and introduces a mixture of glycol and ethanol as a dispersion system to assist self-assembly. By controlling the parameters of self-assembly, we improve the quality of colloidal crystal and reduce the effect of noise on the experiment. To our best knowledge, we are first to pave this path to harvest colloidal crystals. Importantly, a theoretical analysis using an energy landscape base on our process is also developed to provide insights into the PS spheres' self-assembly.展开更多
Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror...Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror plus 4J32 flexible support plus ZTC4 support back plate, the second K9 mirror plus 4J45 flexible support plus ZTC4 support back plate, and the third SiC mirror plus SiC rigid support back plate. A coupled thermo-mechanical analysis of the three primary mirror assemblies was made with finite element method. The results show that the SiC assembly is the best of all schemes in terms of their combination properties due to its elimination of the thermal expansion mismatch between the materials. The analytical results on the cryogenic property of the SiC primary mirror assembly show a higher surface finish of the SiC mirror even under the cryogenic condition.展开更多
The primary task of top-down assembly design is to define a product抯 detailed physical description satisfying its functional requirements identified during the functional design phase. The implementation of this desi...The primary task of top-down assembly design is to define a product抯 detailed physical description satisfying its functional requirements identified during the functional design phase. The implementation of this design process requires two things, that is, product functional representation and a general assembly model. Product functions are not only the formulation of a customer抯 needs, but also the input data of assembly design. A general assembly model is to support the evolving process of the elaboration of a product structure. The assembly feature of extended concept is taken as a functional carrier, which is a generic relation among assembly-modeled entities. The model of assembly features describes the link between product functions and form features of parts. On the basis of this link, the propagation of design modifications is discussed so as to preserve the functionality and the coherence of the assembly model. The formal model of assembly design process describes the top-down process of creating an assembly model. This formal model is represented by the combination of assembly feature operations, the assembly model and the evaluation process. A design case study is conducted to verify the applicability of the presented approaches.展开更多
This paper describes the synthesis of peptide fragments for use in a new type of combinatorial discovery technology, in which the building blocks are brought together by non-covalent interactions, rather than direct c...This paper describes the synthesis of peptide fragments for use in a new type of combinatorial discovery technology, in which the building blocks are brought together by non-covalent interactions, rather than direct chemical bonding. The building blocks of interest—in this case different amino acids—are converted to amphiphiles by attachment to lipid tails. The amphiphiles, when mixed together in aqueous phase, are designed so that they aggregate spontaneously to form micelles. The building blocks form the headgroups of each of the amphiphiles, and these headgroups cover the surface of the micelle in a dynamic close-packed fluid mosaic array. These building blocks come together so closely that two- or three-dimensional structures are created on the surface of the micelles, and these can be screened in biological assays to find out which combination of building blocks is able to elicit a biological response. Lipopeptides consisting of two residues of lipoamino acid and other amino acids moieties have been designed, synthesized, characterized and the ability of these constructs to form supra-molecular assemblies is demonstrated.展开更多
This study aimed at designing and assembling an improvised Logic Gates Simulator that can be utilized as an instructional device in basic digital electronics instruction at Caraga State University Cabadbaran Campus, P...This study aimed at designing and assembling an improvised Logic Gates Simulator that can be utilized as an instructional device in basic digital electronics instruction at Caraga State University Cabadbaran Campus, Philippines. This instructional device is believed to enhance the teaching-learning process and would also help address the scarcity of instructional equipment in the school and in the country. Descriptive method of research was employed to come up with the design of the simulator based on the course content of basic digital electronics subject. Acceptability of the improvised simulator based on standards set in this study was?gathered from the experts as respondents using a self-made questionnaire. The data were treated using average weighted mean utilizing parametric scales with verbal descriptions. Findings revealed that the improvised logic gates simulator is highly acceptable in terms of its cost and availability of components,?design and construction,operations, and troubleshooting features. It is concluded that the improvised logic gates simulator is at par in terms of standards on instructional devices based on the evaluation results of experts and is therefore recommended to be used in basic digital electronics instruction. The simulator is an innovative answer and an alternate solution to the scarcity of instructional materials and devices at Caraga State University Cabadbaran Campus.展开更多
文摘To support modular fixture assembly design in virtual environment,a multi-view based modular fixture virtual assembly model is proposed.Instead of squeezing all assembly related information into a single model,three complementary views of assembly model,element information,function and structure,and assembly relationship are proposed to be used.The first view contains the detailed element information,while the other two explicitly capture the hierarchical function relationships and mating relationships respectively.These views are complementary in the sense that each view only contains a specific aspect of assembly related information while together they include required assembly related information.The proposed assembly model is specialized to accommodate the features of modular fixture virtual assembly design and applied in our developed prototype system.
文摘In times of digitalisation, visual assistance systems in assembly are increasingly important. The design of these assembly systems needs to be highly complex to meet the requirements. Due to the increasing number of variants in production processes, as well as shorter innovation and product life cycles, assistance systems should improve quality and reduce complexity of assembly processes. However, many large kitchen manufacturers still assemble kitchen cabinets manually, due to the high variety of components, such as rails and fittings. This paper focuses on the analysis and evaluation of virtual assistance systems to improve quality and usability in individualised kitchen cabinet assembly processes at a large German manufacturer. A solution is identified and detailed.
文摘Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system generates the assembly scheme using the case? based method, then assigns the design requirements into each component of the assembly. The detail design for each component can be performed under these design constraints. In order to practise concurrent design, the system sends the final design result to the upstream section and downstream section through PDM to achieve information sharing and integration.
基金Supported by National Natural Science Foundation of China(Grant Nos.51125020,51105013)the Innovation Foundation of Beihang University for PhD Graduates
文摘A root hinge drive assembly is preferred in place of the classical viscous damper in a large solar array system.It has advantages including better deployment control and higher reliability.But the traditional single degree of freedom model should be improved.A multiple degrees of freedom dynamics model is presented for the solar arrays deployment to guide the drive assembly design.The established model includes the functions of the torsion springs,the synchronization mechanism and the lock-up impact.A numerical computation method is proposed to solve the dynamics coupling problem.Then considering the drive torque requirement calculated by the proposed model,a root hinge drive assembly is developed based on the reliability engineering design methods,and dual actuators are used as a redundancy design.Pseudo-efficiency is introduced and the major factors influencing the(pseudo-)efficiency of the gear mechanism designed with high reduction ratio are studied for further test data analysis.A ground prototype deployment test is conducted to verify the capacity of the drive assembly.The test device consists of a large-area solar array system and a root hinge drive assembly.The RHDA development time is about 43 s.The theoretical drive torque is compared with the test values which are obtained according to the current data and the reduction efficiency analysis,and the results show that the presented model and the calibration methods are proper enough.
基金Supported by National Key Technology Support Program of China(Grant No.2011BAF11B03)National Science and Technology Major Projects of China(Grant No.2012ZX04010-011)
文摘The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the effect of machine center elastic deformations on workspace volume. Therefore, a method called pre-deformation for assembly performance is presented. This method is technically based on the characteristics of machine tool assembly and collaborative computer-aided engineering (CAE) analysis. The research goal is to enhance assembly performance, including straightness, positioning, and angular errors, to realize the precision of the machine tool design. A vertical machine center is taken as an example to illustrate the proposed method. The concept of travel error is defined to obtain the law of the guide surface. The machine center assembly performance is analyzed under cold condition and thermal balance condition to establish the function of pre-deformation. Then, the guide surface in normal direction is processed with the pre-deformation function, and the machine tool assembly performance is measured using a laser interferometer. The measuring results show that the straightness deviation of the Z component in the Y-direction is 158.9% of the allowable value primarily because of the gravity of the spindle head, and the straightness of the X and Y components is minimal. When the machine tool is processed in pre-deformation, the straightness of the Z axis moving component is reduced to 91.2%. This research proposes a pre-deformation machine center assembly method which has sufficient capacity to improving assembly accuracy of machine centers.
基金This project is supported by State High Technology Development Program of China (No.2003AA413310) National Natural Science Foundation of China(No.60375020) 973 Program of China(No. 2004CB719402, No. 2002CB312106).
文摘Aiming at difficult sorting and retrieving complicated structure assembliesin assembly lib, a method for compartmentalizing assembly design resource by conceptual productstructure model is presented. The similar assembly retrieval mechanisms of symbol assembly relationgraph matching and symbol assembly relation graph similarity are discussed. The method is validatedby taking valve rod assemblies as example.
基金supported by the National Natural Science Foundation of China(62072348)the Science and Technology Major Project of Hubei Province(Next-Generation AI Technologies,2019AEA170).
文摘Cloud manufacturing is one of the three key technologies that enable intelligent manufacturing.This paper presents a novel attribute-based encryption(ABE)approach for computer-aided design(CAD)assembly models to effectively support hierarchical access control,integrity verification,and deformation protection for co-design scenarios in cloud manufacturing.An assembly hierarchy access tree(AHAT)is designed as the hierarchical access structure.Attribute-related ciphertext elements,which are contained in an assembly ciphertext(ACT)file,are adapted for content keys decryption instead of CAD component files.We modify the original Merkle tree(MT)and reconstruct an assembly MT.The proposed ABE framework has the ability to combine the deformation protection method with a content privacy of CAD models.The proposed encryption scheme is demonstrated to be secure under the standard assumption.Experimental simulation on typical CAD assembly models demonstrates that the proposed approach is feasible in applications.
文摘Configuration design is an essential, creative and decision-making step m parallel manipulator design process, in which modeling and assembly are iterative and trivial. Combined approach with automatic parametric modeling and automatic assembly is proposed for parallel manipulator configuration design. The design process and key techniques, such as configuration design, configuration verification, poses calculation of all parts in parallel manipulator, virtual assembly and etc., are discussed and demonstrated by an example. A software package is developed for parallel manipulator configuration design based on the proposed method with Visual C++ and UG/OPEN on Unigraphics.
基金supported by the National Natural Science Foundation of China(6210333962073261)+1 种基金Shaanxi Natural Science Basic Research Program(2023-JC-YB-569)the Fundamental Research Funds for the Central Universities。
文摘In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.
基金the National Defense Fundamental Research Foundation of China(JCKY2017204B502,JCKY2016204A502)and National Natural Science Foundation of China(51935003).
文摘The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.
基金Funded by the Shandong Natural Science Foundation(Y2005F26) and the Scientific Research Foundation for doctor of Jinan Uni-versity(B0538)
文摘By applying genetic engineering methodology into the incremental product growth design,a generic structural design approach is put forward,as well as an intelligent evolution strategy of the product units growth,which is based on the multilevel Decomposition and Reconstruction of product gene. To guarantee a successful transformation from functional requirement to geometry constraints between parts in the incremental growth design of mechanical product,the integrated design method incorporates the design requirements and assembly perspective into product genetic information. The mathematical model of state transition during incremental design process are given at first,based on which product can grow step by step from functional requirement to the final geometrical product structure automatically. And then,to quantify the measurement of assembly efficiency,a mathematical model as well as a technology to quantify assembly constraints was developed by application of some fuzzy logic algorithms. Finally,examples have been proved that the approach is promising.
文摘Logic components are used to support the conceptual design Taking the stamping die structure as the research object,several logic components are defined for the conceptual die construction design A new method logic assembly modeling is presented to satisfy the characteristic of the top down die design process Representing shapes and spatial relations in logic can provide a natural,intuitive method of developing complete computer systems for reasoning about die construction design at the conceptual stage This method can reflect the designer's thought clearly and provide the designer with a test bed for generating alternatives and performing reasoning work at the conceptual die design stage
基金National Nature Science Foundation of China(No.60273044)Nature Science Foundation of Anhui Province(No.01042201)
文摘The whole superconducting HT-7U Tokamak is a high-cost and large-scale complicated device. The assembly requirement of HT-7U device is arduous and strict. At present, there have been no guiding principle for the assembly of the device, but assembly simulation can help the engineer plan and make decision by an intuitional and visual way before its actual assembly. The problem is that which scheme is most suitable should be solved primarily. From current research situation and technology progress of assembly simulation, this paper explained and analyzed four kinds of technological schemes of assembly simulation in common use. Finally, we got the most feasible scheme that was suitable for HT-7U assembly simulation by comparing their technological issues and difficult points of simulation among the four kinds of feasible schemes.
文摘Design for assembly (DFA) evaluation has preved to be a systematic approach in determining how well a product is designed from the point of view of assembly. Geometric feature, such as symmetry, is an important factor when evaluating the assemblability of a part in it. But the automated detection of symmetry has always been considered to be a difficult problem which requires great effort. Proposed here is a new method for part symmetry automated recognition. The method is based on ray detecting theory and can effectively recognize the symmetry of parts with various shapes. It is of great importance to linking together DFA evaluation procedure with CAD model.
文摘According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504264,51501128,and 61274064)
文摘A versatile and reliable approach is created to fabricate wafer-scale colloidal crystal that consists of a monolayer of hexagonally close-packed polystyrene (PS) spheres. Making wafer-scale colloidal crystal is usually challenging, and it lacks a general theoretical guidance for experimental approaches. To obtain the optimal conditions for self-assembly, a systematic statistical design and analysis method is utilized here, which applies the pick-the-winner rule. This new method combines spin-coating and thermal treatment, and introduces a mixture of glycol and ethanol as a dispersion system to assist self-assembly. By controlling the parameters of self-assembly, we improve the quality of colloidal crystal and reduce the effect of noise on the experiment. To our best knowledge, we are first to pave this path to harvest colloidal crystals. Importantly, a theoretical analysis using an energy landscape base on our process is also developed to provide insights into the PS spheres' self-assembly.
文摘Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror plus 4J32 flexible support plus ZTC4 support back plate, the second K9 mirror plus 4J45 flexible support plus ZTC4 support back plate, and the third SiC mirror plus SiC rigid support back plate. A coupled thermo-mechanical analysis of the three primary mirror assemblies was made with finite element method. The results show that the SiC assembly is the best of all schemes in terms of their combination properties due to its elimination of the thermal expansion mismatch between the materials. The analytical results on the cryogenic property of the SiC primary mirror assembly show a higher surface finish of the SiC mirror even under the cryogenic condition.
基金This is a Sino-France project(1998-2001)supported by French Ministry of Education.
文摘The primary task of top-down assembly design is to define a product抯 detailed physical description satisfying its functional requirements identified during the functional design phase. The implementation of this design process requires two things, that is, product functional representation and a general assembly model. Product functions are not only the formulation of a customer抯 needs, but also the input data of assembly design. A general assembly model is to support the evolving process of the elaboration of a product structure. The assembly feature of extended concept is taken as a functional carrier, which is a generic relation among assembly-modeled entities. The model of assembly features describes the link between product functions and form features of parts. On the basis of this link, the propagation of design modifications is discussed so as to preserve the functionality and the coherence of the assembly model. The formal model of assembly design process describes the top-down process of creating an assembly model. This formal model is represented by the combination of assembly feature operations, the assembly model and the evaluation process. A design case study is conducted to verify the applicability of the presented approaches.
文摘This paper describes the synthesis of peptide fragments for use in a new type of combinatorial discovery technology, in which the building blocks are brought together by non-covalent interactions, rather than direct chemical bonding. The building blocks of interest—in this case different amino acids—are converted to amphiphiles by attachment to lipid tails. The amphiphiles, when mixed together in aqueous phase, are designed so that they aggregate spontaneously to form micelles. The building blocks form the headgroups of each of the amphiphiles, and these headgroups cover the surface of the micelle in a dynamic close-packed fluid mosaic array. These building blocks come together so closely that two- or three-dimensional structures are created on the surface of the micelles, and these can be screened in biological assays to find out which combination of building blocks is able to elicit a biological response. Lipopeptides consisting of two residues of lipoamino acid and other amino acids moieties have been designed, synthesized, characterized and the ability of these constructs to form supra-molecular assemblies is demonstrated.
文摘This study aimed at designing and assembling an improvised Logic Gates Simulator that can be utilized as an instructional device in basic digital electronics instruction at Caraga State University Cabadbaran Campus, Philippines. This instructional device is believed to enhance the teaching-learning process and would also help address the scarcity of instructional equipment in the school and in the country. Descriptive method of research was employed to come up with the design of the simulator based on the course content of basic digital electronics subject. Acceptability of the improvised simulator based on standards set in this study was?gathered from the experts as respondents using a self-made questionnaire. The data were treated using average weighted mean utilizing parametric scales with verbal descriptions. Findings revealed that the improvised logic gates simulator is highly acceptable in terms of its cost and availability of components,?design and construction,operations, and troubleshooting features. It is concluded that the improvised logic gates simulator is at par in terms of standards on instructional devices based on the evaluation results of experts and is therefore recommended to be used in basic digital electronics instruction. The simulator is an innovative answer and an alternate solution to the scarcity of instructional materials and devices at Caraga State University Cabadbaran Campus.