Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
In order to improve the compatibility of laser-induced breakdown spectroscopy( LIBS) instrument for different types of parts and optimize the analysis and testing processes,a modularized automatic measurement and cont...In order to improve the compatibility of laser-induced breakdown spectroscopy( LIBS) instrument for different types of parts and optimize the analysis and testing processes,a modularized automatic measurement and control system was developed. Based on the characteristics of each LIBS component, the following development steps have been performed:( 1) a summary of characteristic parameters of the component are established;( 2) the integration mechanism of multiple electrical interfaces is designed;( 3) the component control instruction library is developed. The experimental results indicate that the measurement and control system is compatible with most LIBS parts in the market.Spectrometer and laser can be compatible with at least three different types of parts. In addition,a multilayer iterative testing process is designed to improve the efficiency of optimization process of LIBS parameters. The experimental results have shown that the automatic optimization of the delay time compared to the manual testing provides significant gain in testing efficiency. The range of delay time in the experiments is 1. 28 to 10. 28 μs and the step value is 1,0. 5,0. 2 and 0. 1 μs. The gain in testing efficiency has been found to be increased by 73. 76%,75. 93%,78. 81% and 80. 42%,respectively.展开更多
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan...As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and th...In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and the support of macro policies,people’s demand for close to nature and beautify the environment is gradually increasing,which has brought new growth momentum for the development of the landscaping industry.Simultaneously,from the perspective of future economic development and urban development,the landscaping industry still has a lot of room for development.However,with the rapid development of landscape engineering,the problem of cost control of landscape engineering is becoming more prominent,the phenomenon of budget overestimation is common,and there are many factors affecting the cost of landscape engineering,which brings difficulties and challenges to the analysis of its influencing factors and cost management.How to scientifically analyze the influencing factors and control the cost has become an important link in the landscaping project.To solve the above problems,this paper takes the design stage of landscaping engineering as the background,takes the design estimate of landscaping engineering as the research object,through literature research and data collection,fully excavates the main influencing factors of the design estimate stage of landscaping engineering,analyzes the key points of cost control,and provides reference ideas and directions for the later cost management and control.展开更多
This paper reviews the applications of the multi degree-of-freedom(MDOF)equivalent linear system in seismic analysis and design of planar steel and reinforced concrete framed structures.An equivalent MDOF linear struc...This paper reviews the applications of the multi degree-of-freedom(MDOF)equivalent linear system in seismic analysis and design of planar steel and reinforced concrete framed structures.An equivalent MDOF linear structure,analogous to the original MDOF nonlinear structure,is constructed,which has the same mass and elastic stiffness as the original structure and modal damping ratios that account for the effects of geometrical and material nonlinearities.The equivalence implies a balance between the viscous damping work of the equivalent linear structure and that of the nonlinearities in the original nonlinear structure.This work balance is established with the aid of a transfer function in the frequency domain.Thus,equivalent modal damping ratios can be explicitly determined in terms of the period and deformation levels of the structure as well as the soil types.Use of these equivalent modal damping ratios can help address a variety of seismic analysis and design problems associated with planar steel and reinforced concrete framed structures in a rational and accurate manner.These include force-based seismic design with the aid of acceleration response spectra characterized by high amounts of damping,improved direct displacement-based seismic design and the development of advanced seismic intensity measures.The equivalent modal damping ratios are also utilized in the context of linear modal analysis for the definition and construction of the MDOF response spectrum.Furthermore,the equivalent modal damping ratios are employed in a seismic retrofit method for steel-framed structures with viscous dampers.Finally,it is demonstrated that modal behavior(or strength reduction)factors can be easily constructed based on these modal damping ratios for a more rational and accurate force-based seismic design,including the determination of inelastic displacement profiles.展开更多
In this paper, the characteristics of forces in active control systems connected to adjacent levels of a building are analyzed. The following characteristics are observed: (1) active control can provide significant...In this paper, the characteristics of forces in active control systems connected to adjacent levels of a building are analyzed. The following characteristics are observed: (1) active control can provide significantly superior supplemental damping to a building, but causes a small frequency shift; (2) the linear quadratic regulator (LQR)-based control force is composed of an elastic restoring force component and a damping force component, where the damping force is almost identical to the total control force, however, the elastic restoring force is very small; and (3) the active control forces prevent mction most of the time during the entire control process. These three characteristics imply that active control systems connected to adjacent levels of a building behave like passive damping devices with adjustable parameters, namely damping characteristics in an active control, which is the mechanism used by semi-active control devices to reach similar performance as active control systems. Two indices are defined to quantify the damping characteristics of control forces in active control systems. These two indices can also be used to quantify the capacity of semi-active control to achieve the perfonrlance of active control. Based on the above observations, two principles are founded for optimization of parameters of semi-active control devices and passive dampers. The first is that the maximum output force of a semi-active or passive device to be designed is identical to an active device, called "design principle". The other is the response equivalent principle, which states that the response of a building with semi-active or passive devices is the same as with active devices when the same maximum output force is applied. The design procedure for semi-active control devices and passive dampers is described in detail. Finally, numerical simulations of two benchmark problems is conducted to demonstrate the damping characteristics of active control and investigate the capacity of semi-active control to achieve the same performance as active control.展开更多
Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Fai...Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Failure of a station or channel can cause all the execution stations(EXs)to be out of control.The randomness of the controllable capacity of the EXs increases the difficulty of the reliability evaluation of the SSCS.In this study,the loop designed SSCS and reliability analysis are examined for the interconnected systems.The uncertainty analysis of the controllable capacity based on the evidence theory for the SSCS is proposed.The bidirectional and loop channels are introduced to reduce the layers and stations of the existing SSCS with tree configuration.The reliability evaluation and sensitivity analysis are proposed to quantify the controllability and vulnerable components for the SSCS in different configurations.By aiming at the randomness of the controllable capacity of the EXs,the uncertainty analysis of the controllable capacity of the SSCS based on the evidence theory is proposed to quantify the probability of the SSCS for balancing the active power deficiency of the grid.展开更多
Objective:The randomized controlled trial(ClinicalTrials.gov identifier NCT02990741)will investigate whether more frequent electrocardiographic(ECG)recordings and analyses with an automated ECG system would improve de...Objective:The randomized controlled trial(ClinicalTrials.gov identifier NCT02990741)will investigate whether more frequent electrocardiographic(ECG)recordings and analyses with an automated ECG system would improve detection of atrial fibrillation compared with a single annual ECG screen in elderly Chinese in community health centers.Design:Men and women(≥65 years)will be randomized into intensive(n=3500)and usual(n=3500)screening groups,and within the intensive screening group into intensive screening(n=2625)and more intensive screening(n=875)subgroups.ECG recordings will be performed with an automated ECG analysis system(AliveCor heart monitor)at 1 year in the usual screening group,at 3,6,9,and 12 months in the intensive screening subgroup,and at 1,2,3,and 4 weeks and 3,6,9,and 12 months in the more intensive screening subgroup.The primary outcome is the detection rate of atrial fibrillation between the usual screening group and the intensive screening group.Sample size estimation was based on a projected detection rate of atrial fibrillation of 2.0% by a single ECG recording at 12 months,an improvement of 50% with more frequent ECG recordings,α=0.05,power of 80%,and a one-sided test.Conclusions:The trial will provide evidence on the clinical effectiveness of more frequent ECG recordings by a handheld automated analysis system in the detection of atrial fibrillation.展开更多
This paper is concerned with a method for forming distributed measurement and control system.A three-layer structure model based on network,physical node layer and func-tion node layer is discussed.It is designed on o...This paper is concerned with a method for forming distributed measurement and control system.A three-layer structure model based on network,physical node layer and func-tion node layer is discussed.It is designed on object-oriented software method.The model has a fine application prospect.展开更多
In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, ...In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, without zeros, and with measurable state. The controller guarantees that the control system is Type 1 and has the desired constant gain and poles or that the control system tracks, with a specified maximum error and with a specified maximum time constant, a generic reference with bounded derivative (variation in the discrete-time case), also in the presence of a generic disturbance with bounded derivative (variation). In addition, it is considered the case in which the reference is known a priori. The utility and the efficiency of the proposed methods are illustrated with attractive and significant examples of motion control and temperature control. This book is useful for the design of control systems, especially for manufacturing systems, that are versatile, fast, precise and robust.展开更多
Super-quantum discord(SQD) with weak measurement is regarded as a kind of quantum correlation in quantum information processing. We compare and analyze the dynamical evolutions of SQD, quantum discord(QD), and qua...Super-quantum discord(SQD) with weak measurement is regarded as a kind of quantum correlation in quantum information processing. We compare and analyze the dynamical evolutions of SQD, quantum discord(QD), and quantum entanglement(QE) between two qubits in the correlated dephasing environmental model. The results indicate that(i) owing to the much smaller influence of weak measurement on the coherence of the system than that of von Neumann projection measurement, SQD with weak measurement is larger than QD, and(ii) dynamical evolution of QD or QE monotonically goes to zero with time, while SQD monotonically tends to a stable value and a freezing phenomenon occurs. The stable value after freezing mainly depends on the measurement strength and the purity of the initial quantum state.展开更多
After giving a short review of the methods used for detecting and monitoring in general systems, this paper describes the way of communication between computer and Computer Numerical Control (CNC) Machining Center (MC...After giving a short review of the methods used for detecting and monitoring in general systems, this paper describes the way of communication between computer and Computer Numerical Control (CNC) Machining Center (MC). Based on these, the paper addresses the means of performing in cycle measurement for manufacturing quality, provides an approach of improving the state of manufacturing process by achieving the real time change of control parameters according to the level of manufacturing process, and discusses the technique of implementing in process dimensional errors compensation corresponding to the in cycle measurement. The results of the experiments show that the frame design is successful and the operation is reliable. The system is taking shape nowadays.展开更多
In accordance with the technical requirements of the full hydrogen bell anneal furnace(BAF)used for the annealing of stainless steel coils in the Baosteel Stainless Steel Business Unit,the design concept for the autom...In accordance with the technical requirements of the full hydrogen bell anneal furnace(BAF)used for the annealing of stainless steel coils in the Baosteel Stainless Steel Business Unit,the design concept for the automatic control system was introduced in the paper.The major points described concerned the infrastructure of computers and networks,system interfaces,control functions,etc.The process control system of the full hydrogen BAF(L2)was the topic and its seven main functions were introduced.The expected output was achieved and manufacturing efficiency was enhanced within three months after the BAF units were put into operation,which demonstrated that the design concept of the automatic control system introduced in the paper was correct and that its functionalities were effective.展开更多
This paper deals with control system design and implementation problems encountered in multiple robot systems. The methodology developed is depicted by a set of coordination mechanisms using hierarchical net structure...This paper deals with control system design and implementation problems encountered in multiple robot systems. The methodology developed is depicted by a set of coordination mechanisms using hierarchical net structures and their accompanying rules. With the net models, the hierarchical and distributed control system is designed for an assembly task. Synchronization commands allow coordination of the movements of the robots. The net models make concurrency of the movements of the robots transparent to users. The net based machine controller executes robot motion control through the communication with the external robot controller using the command/response concept. Sensory signals indicating the change of state of robots are used to trigger or initiate tasks. Simultaneous movement of the robots is obtained by creating different background threads running in parallel under Windows OS. The multilevel hierarchical control system can be consistently constructed using net models.展开更多
This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processe...This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processes and artificial neural networks (ANN) model which were validated using experimental data obtained from functioning crude oil distillation column of Port-Harcourt Refinery, Nigeria by MATLAB computer program. Ninety percent (90%) of the experimental data sets were used for training while ten percent (10%) were used for testing the networks. The maximum relative errors between the experimental and calculated data obtained from the output variables of the neural network for CODC design were 1.98 error % and 0.57 error % when ANN only and ANNBMC were used respectively while their respective values for the maximum relative error were 0.346 error % and 0.124 error % when they were used for the controller prediction. Larger number of iteration steps of below 2500 and 5000 were required to achieve convergence of less than 10-7?for the training error using ANNBMC for both the design of the CODC and controller respectively while less than 400 and 700 iteration steps were needed to achieve convergence of 10-4?using ANN only. The linear regression analysis performed revealed the minimum and maximum prediction accuracies to be 80.65% and 98.79%;and 98.38% and 99.98% when ANN and ANNBMC were used for the CODC design respectively. Also, the minimum and maximum prediction accuracies were 92.83% and 99.34%;and 98.89% and 99.71% when ANN and ANNBMC were used for the CODC controller respectively as both methodologies have excellent predictions. Hence, artificial neural networks based Monte Carlo simulation is an effective and better tool for the design and control of crude oil distillation column.展开更多
In the phase of the normalized COVID-19 prevention and control,non-contact temperature measurement is one of the most efficient and convenient methods for initial screening of suspected cases.In the year of 2020 in Wu...In the phase of the normalized COVID-19 prevention and control,non-contact temperature measurement is one of the most efficient and convenient methods for initial screening of suspected cases.In the year of 2020 in Wuhan,such non-contact equipment was urgently demanded,standards development in the traditional way cannot satisfy the market needs.So,the research and development of this standard for infrared intelligent body temperature measurement system was carried out in a rapid way.展开更多
Missile fire control system is the core of ship-based missile weapon system, whose safeguard level has direct relation with the attack ability of naval vessels. After a long period of deep investigation and research, ...Missile fire control system is the core of ship-based missile weapon system, whose safeguard level has direct relation with the attack ability of naval vessels. After a long period of deep investigation and research, it was found that, in one missile fire control system, there are such problems as single safeguard system, low ratio of cost to efficiency, etc. By adopting intelligent control techniques and many measures to multiple securities, the new type of assistant system is designed, some difficult problems are solved, such as fixed project channel and unitary means of missiles, which can make the equipment carry out combat mission reliably and continuously.展开更多
Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage...Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage.Although advanced PID tuning methods have been proposed,the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties.This requires continuous fine tuning of the PID parameters.However,manual adjustment of these parameters can compromise the stability and robustness of the AVR system.This study focuses on the online self-tuning of PID controllers called indirect design approach-2(IDA-2)in AVR systems while preserving robustness.In particular,we indirectly tune the PID controller by shifting the frequency response.The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters.Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously,thereby improving the control performance and robustness.We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins(GMs)and phase margins(PMs)with previously optimized PID parameters during parameter uncertainties.The proposed method is further evaluated in terms of disturbance rejection,measurement noise,and frequency response analysis during parameter uncertainty calculations against existing methods.Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system.In summary,online self-tuning enables automated PID parameter adjustment in an AVR system,while maintaining stability and robustness.展开更多
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金National M ajor Scientific Instruments and Equipment Development Special Funds,China(No.2011YQ030113)
文摘In order to improve the compatibility of laser-induced breakdown spectroscopy( LIBS) instrument for different types of parts and optimize the analysis and testing processes,a modularized automatic measurement and control system was developed. Based on the characteristics of each LIBS component, the following development steps have been performed:( 1) a summary of characteristic parameters of the component are established;( 2) the integration mechanism of multiple electrical interfaces is designed;( 3) the component control instruction library is developed. The experimental results indicate that the measurement and control system is compatible with most LIBS parts in the market.Spectrometer and laser can be compatible with at least three different types of parts. In addition,a multilayer iterative testing process is designed to improve the efficiency of optimization process of LIBS parameters. The experimental results have shown that the automatic optimization of the delay time compared to the manual testing provides significant gain in testing efficiency. The range of delay time in the experiments is 1. 28 to 10. 28 μs and the step value is 1,0. 5,0. 2 and 0. 1 μs. The gain in testing efficiency has been found to be increased by 73. 76%,75. 93%,78. 81% and 80. 42%,respectively.
基金Supported by Fundamental Research Funds for the Central Universities of China (Grant No.2023JBZY020)Transformation Cultivation Program of Scientific and Technological Achievements from Beijing Jiaotong University of China (Grant No.M21ZZ200010)。
文摘As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
文摘In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and the support of macro policies,people’s demand for close to nature and beautify the environment is gradually increasing,which has brought new growth momentum for the development of the landscaping industry.Simultaneously,from the perspective of future economic development and urban development,the landscaping industry still has a lot of room for development.However,with the rapid development of landscape engineering,the problem of cost control of landscape engineering is becoming more prominent,the phenomenon of budget overestimation is common,and there are many factors affecting the cost of landscape engineering,which brings difficulties and challenges to the analysis of its influencing factors and cost management.How to scientifically analyze the influencing factors and control the cost has become an important link in the landscaping project.To solve the above problems,this paper takes the design stage of landscaping engineering as the background,takes the design estimate of landscaping engineering as the research object,through literature research and data collection,fully excavates the main influencing factors of the design estimate stage of landscaping engineering,analyzes the key points of cost control,and provides reference ideas and directions for the later cost management and control.
文摘This paper reviews the applications of the multi degree-of-freedom(MDOF)equivalent linear system in seismic analysis and design of planar steel and reinforced concrete framed structures.An equivalent MDOF linear structure,analogous to the original MDOF nonlinear structure,is constructed,which has the same mass and elastic stiffness as the original structure and modal damping ratios that account for the effects of geometrical and material nonlinearities.The equivalence implies a balance between the viscous damping work of the equivalent linear structure and that of the nonlinearities in the original nonlinear structure.This work balance is established with the aid of a transfer function in the frequency domain.Thus,equivalent modal damping ratios can be explicitly determined in terms of the period and deformation levels of the structure as well as the soil types.Use of these equivalent modal damping ratios can help address a variety of seismic analysis and design problems associated with planar steel and reinforced concrete framed structures in a rational and accurate manner.These include force-based seismic design with the aid of acceleration response spectra characterized by high amounts of damping,improved direct displacement-based seismic design and the development of advanced seismic intensity measures.The equivalent modal damping ratios are also utilized in the context of linear modal analysis for the definition and construction of the MDOF response spectrum.Furthermore,the equivalent modal damping ratios are employed in a seismic retrofit method for steel-framed structures with viscous dampers.Finally,it is demonstrated that modal behavior(or strength reduction)factors can be easily constructed based on these modal damping ratios for a more rational and accurate force-based seismic design,including the determination of inelastic displacement profiles.
基金National Fundamental Research Program (973) Under Grant No. 2007CB714204the R & D Program Under Grant No. 2006BAJ03B06NSFC Under Grant No. 90815027
文摘In this paper, the characteristics of forces in active control systems connected to adjacent levels of a building are analyzed. The following characteristics are observed: (1) active control can provide significantly superior supplemental damping to a building, but causes a small frequency shift; (2) the linear quadratic regulator (LQR)-based control force is composed of an elastic restoring force component and a damping force component, where the damping force is almost identical to the total control force, however, the elastic restoring force is very small; and (3) the active control forces prevent mction most of the time during the entire control process. These three characteristics imply that active control systems connected to adjacent levels of a building behave like passive damping devices with adjustable parameters, namely damping characteristics in an active control, which is the mechanism used by semi-active control devices to reach similar performance as active control systems. Two indices are defined to quantify the damping characteristics of control forces in active control systems. These two indices can also be used to quantify the capacity of semi-active control to achieve the perfonrlance of active control. Based on the above observations, two principles are founded for optimization of parameters of semi-active control devices and passive dampers. The first is that the maximum output force of a semi-active or passive device to be designed is identical to an active device, called "design principle". The other is the response equivalent principle, which states that the response of a building with semi-active or passive devices is the same as with active devices when the same maximum output force is applied. The design procedure for semi-active control devices and passive dampers is described in detail. Finally, numerical simulations of two benchmark problems is conducted to demonstrate the damping characteristics of active control and investigate the capacity of semi-active control to achieve the same performance as active control.
基金supported by Science and Technology Project of SGCC“Research on Flat Architecture and Implementation Technology of Security and Stability Control System in Ultra Large Power Grid”(52170221000U).
文摘Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Failure of a station or channel can cause all the execution stations(EXs)to be out of control.The randomness of the controllable capacity of the EXs increases the difficulty of the reliability evaluation of the SSCS.In this study,the loop designed SSCS and reliability analysis are examined for the interconnected systems.The uncertainty analysis of the controllable capacity based on the evidence theory for the SSCS is proposed.The bidirectional and loop channels are introduced to reduce the layers and stations of the existing SSCS with tree configuration.The reliability evaluation and sensitivity analysis are proposed to quantify the controllability and vulnerable components for the SSCS in different configurations.By aiming at the randomness of the controllable capacity of the EXs,the uncertainty analysis of the controllable capacity of the SSCS based on the evidence theory is proposed to quantify the probability of the SSCS for balancing the active power deficiency of the grid.
文摘Objective:The randomized controlled trial(ClinicalTrials.gov identifier NCT02990741)will investigate whether more frequent electrocardiographic(ECG)recordings and analyses with an automated ECG system would improve detection of atrial fibrillation compared with a single annual ECG screen in elderly Chinese in community health centers.Design:Men and women(≥65 years)will be randomized into intensive(n=3500)and usual(n=3500)screening groups,and within the intensive screening group into intensive screening(n=2625)and more intensive screening(n=875)subgroups.ECG recordings will be performed with an automated ECG analysis system(AliveCor heart monitor)at 1 year in the usual screening group,at 3,6,9,and 12 months in the intensive screening subgroup,and at 1,2,3,and 4 weeks and 3,6,9,and 12 months in the more intensive screening subgroup.The primary outcome is the detection rate of atrial fibrillation between the usual screening group and the intensive screening group.Sample size estimation was based on a projected detection rate of atrial fibrillation of 2.0% by a single ECG recording at 12 months,an improvement of 50% with more frequent ECG recordings,α=0.05,power of 80%,and a one-sided test.Conclusions:The trial will provide evidence on the clinical effectiveness of more frequent ECG recordings by a handheld automated analysis system in the detection of atrial fibrillation.
文摘This paper is concerned with a method for forming distributed measurement and control system.A three-layer structure model based on network,physical node layer and func-tion node layer is discussed.It is designed on object-oriented software method.The model has a fine application prospect.
文摘In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, without zeros, and with measurable state. The controller guarantees that the control system is Type 1 and has the desired constant gain and poles or that the control system tracks, with a specified maximum error and with a specified maximum time constant, a generic reference with bounded derivative (variation in the discrete-time case), also in the presence of a generic disturbance with bounded derivative (variation). In addition, it is considered the case in which the reference is known a priori. The utility and the efficiency of the proposed methods are illustrated with attractive and significant examples of motion control and temperature control. This book is useful for the design of control systems, especially for manufacturing systems, that are versatile, fast, precise and robust.
基金Project supported by the National Natural Science Foundation of China(Grant No.11264015)
文摘Super-quantum discord(SQD) with weak measurement is regarded as a kind of quantum correlation in quantum information processing. We compare and analyze the dynamical evolutions of SQD, quantum discord(QD), and quantum entanglement(QE) between two qubits in the correlated dephasing environmental model. The results indicate that(i) owing to the much smaller influence of weak measurement on the coherence of the system than that of von Neumann projection measurement, SQD with weak measurement is larger than QD, and(ii) dynamical evolution of QD or QE monotonically goes to zero with time, while SQD monotonically tends to a stable value and a freezing phenomenon occurs. The stable value after freezing mainly depends on the measurement strength and the purity of the initial quantum state.
文摘After giving a short review of the methods used for detecting and monitoring in general systems, this paper describes the way of communication between computer and Computer Numerical Control (CNC) Machining Center (MC). Based on these, the paper addresses the means of performing in cycle measurement for manufacturing quality, provides an approach of improving the state of manufacturing process by achieving the real time change of control parameters according to the level of manufacturing process, and discusses the technique of implementing in process dimensional errors compensation corresponding to the in cycle measurement. The results of the experiments show that the frame design is successful and the operation is reliable. The system is taking shape nowadays.
文摘In accordance with the technical requirements of the full hydrogen bell anneal furnace(BAF)used for the annealing of stainless steel coils in the Baosteel Stainless Steel Business Unit,the design concept for the automatic control system was introduced in the paper.The major points described concerned the infrastructure of computers and networks,system interfaces,control functions,etc.The process control system of the full hydrogen BAF(L2)was the topic and its seven main functions were introduced.The expected output was achieved and manufacturing efficiency was enhanced within three months after the BAF units were put into operation,which demonstrated that the design concept of the automatic control system introduced in the paper was correct and that its functionalities were effective.
文摘This paper deals with control system design and implementation problems encountered in multiple robot systems. The methodology developed is depicted by a set of coordination mechanisms using hierarchical net structures and their accompanying rules. With the net models, the hierarchical and distributed control system is designed for an assembly task. Synchronization commands allow coordination of the movements of the robots. The net models make concurrency of the movements of the robots transparent to users. The net based machine controller executes robot motion control through the communication with the external robot controller using the command/response concept. Sensory signals indicating the change of state of robots are used to trigger or initiate tasks. Simultaneous movement of the robots is obtained by creating different background threads running in parallel under Windows OS. The multilevel hierarchical control system can be consistently constructed using net models.
文摘This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processes and artificial neural networks (ANN) model which were validated using experimental data obtained from functioning crude oil distillation column of Port-Harcourt Refinery, Nigeria by MATLAB computer program. Ninety percent (90%) of the experimental data sets were used for training while ten percent (10%) were used for testing the networks. The maximum relative errors between the experimental and calculated data obtained from the output variables of the neural network for CODC design were 1.98 error % and 0.57 error % when ANN only and ANNBMC were used respectively while their respective values for the maximum relative error were 0.346 error % and 0.124 error % when they were used for the controller prediction. Larger number of iteration steps of below 2500 and 5000 were required to achieve convergence of less than 10-7?for the training error using ANNBMC for both the design of the CODC and controller respectively while less than 400 and 700 iteration steps were needed to achieve convergence of 10-4?using ANN only. The linear regression analysis performed revealed the minimum and maximum prediction accuracies to be 80.65% and 98.79%;and 98.38% and 99.98% when ANN and ANNBMC were used for the CODC design respectively. Also, the minimum and maximum prediction accuracies were 92.83% and 99.34%;and 98.89% and 99.71% when ANN and ANNBMC were used for the CODC controller respectively as both methodologies have excellent predictions. Hence, artificial neural networks based Monte Carlo simulation is an effective and better tool for the design and control of crude oil distillation column.
文摘In the phase of the normalized COVID-19 prevention and control,non-contact temperature measurement is one of the most efficient and convenient methods for initial screening of suspected cases.In the year of 2020 in Wuhan,such non-contact equipment was urgently demanded,standards development in the traditional way cannot satisfy the market needs.So,the research and development of this standard for infrared intelligent body temperature measurement system was carried out in a rapid way.
基金Sponsored by Major Task Financially-aided for Military Equipment Maintenance Safeguard
文摘Missile fire control system is the core of ship-based missile weapon system, whose safeguard level has direct relation with the attack ability of naval vessels. After a long period of deep investigation and research, it was found that, in one missile fire control system, there are such problems as single safeguard system, low ratio of cost to efficiency, etc. By adopting intelligent control techniques and many measures to multiple securities, the new type of assistant system is designed, some difficult problems are solved, such as fixed project channel and unitary means of missiles, which can make the equipment carry out combat mission reliably and continuously.
基金the Malaysian Ministry of Higher Education(MOHE)for their support through the Fundamental Research Grant Scheme(FRGS/1/2021/ICT02/UMP/03/3)(UMPSA Reference:RDU 210117)。
文摘Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage.Although advanced PID tuning methods have been proposed,the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties.This requires continuous fine tuning of the PID parameters.However,manual adjustment of these parameters can compromise the stability and robustness of the AVR system.This study focuses on the online self-tuning of PID controllers called indirect design approach-2(IDA-2)in AVR systems while preserving robustness.In particular,we indirectly tune the PID controller by shifting the frequency response.The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters.Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously,thereby improving the control performance and robustness.We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins(GMs)and phase margins(PMs)with previously optimized PID parameters during parameter uncertainties.The proposed method is further evaluated in terms of disturbance rejection,measurement noise,and frequency response analysis during parameter uncertainty calculations against existing methods.Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system.In summary,online self-tuning enables automated PID parameter adjustment in an AVR system,while maintaining stability and robustness.
基金supported in part by the National Natural Science Foundation of China(51939001,61976033,62273072)the Natural Science Foundation of Sichuan Province (2022NSFSC0903)。
文摘This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.