In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of sci...In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of scientific instruments on board.The system design of Queqiao-2,including mission orbit and transfer orbit design,configuration and layout design,housekeeping and information flow design,power supply and distribution design,GNC and propulsion system design,communication links design,etc.,was accomplished through comprehensive tradeoff and evaluation on technical maturity,availability,schedule,cost,and so on.With a view to reducing development risk,both the platform and relay communication payloads were developed based on significant heritage from previous Queqiao relay satellite and other relevant spacecraft.Queqiao-2 features flexible system architecture to support multiple frequencies,modulations,data rates and software reconfigurations to meet new user requirements.Subsequent to a successful launch on March 20,2024,by means of 5 orbit maneuvers,Queqiao-2 was inserted into a highly elliptical frozen mission orbit around the moon with a 24h period on schedule.Following on-orbit tests and calibrations,Queqiao-2 has possessed the capacity to provide reliable relay communication services to multiple lunar exploration missions,as well as the capacity to perform scientific observations.Under the support of Queqiao-2,Chang′e-6 achieved its ambitious mission goal to collect and return samples from the moon′s mysterious far side.In the meanwhile,Queqiao-2 has also paved the way for the following Chinese lunar exploration missions including Chang′e-7 and Chang′e-8.The design life time of Queqiao-2 is more than 8 years.Benefit from flexibility and extensibility of relay communication system design,it is convenient to provide relay communication services for future lunar exploration missions of both China and other countries.In addition,innovative scientific observations would be performed during the period that no relay communication task is arranged.The system design of Queqiao-2 reflects the development philosophy of technical innovations and inheritance integration.Based on highly flexible and extensible system architecture,multiple and concurrent relay communication mission requirements can be met.It can provide strong supports for future lunar exploration missions.Successful launching,orbit entering and on-orbit tests of Queqiao-2 verified the correct design principle and versatility.By means of Queqiao-2,more innovative scientific outcomes are anticipated and lunar exploration activities can be facilitated.展开更多
The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and soci...The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose...The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose of the independent supervision function is to ensure that the system operates within the scope of procedures and manuals.At present,the function of independent supervision is a difficult and confusing issue for various original equipment manufacturers as well as suppliers,and there is an urgent requirement to put forward relevant requirements and form relevant methods.Based on the above mentioned objective,the basic requirements of the independent supervision function of design assurance system were studied,the problems and deficiencies in the organization,staffing,and methods existing in the current independent supervision function were analyzed,the improvement suggestions and measures for the performance of the independent supervision function from the aspects of the organization,staffing,procedures,and suppliers were put forward.The present work and conclusions provide guidance and direction for the effective operation of the design assurance system.展开更多
In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the d...In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the design of an intelligent learning system for university physics based on cloud computing platforms,and applies this system to teaching environment of university physics.It successfully integrates emerging technologies such as cloud computing,machine learning,and situational awareness,integrates learning context awareness,intelligent recording and broadcasting,resource sharing,learning performance prediction,and content planning and recommendation,and comprehensively improves the quality of university physics teaching.It can optimize the teaching process and deepen intelligent teaching reform,aiming at providing references for the teaching practice of university physics.展开更多
This project to state cocoon to pick up object,by studying the cocoon stress performance and structure characteristics.On the basis of the picking up work process,vig virtual prototype technology to design and study a...This project to state cocoon to pick up object,by studying the cocoon stress performance and structure characteristics.On the basis of the picking up work process,vig virtual prototype technology to design and study a kind of mechanical used to cocoon picking,by using ADAMS,Soliworks software to complete the whole process of mechanical system design,simulation,can meet the premise of stable,reliable cocoon picking,and cocoon picking mechanical system design,low cost and simple structure.展开更多
The library seating management system is an important part of the library’s modern services. The system is based on the Spring and Spring Boot framework, and the system realizes a series of functions such as real-tim...The library seating management system is an important part of the library’s modern services. The system is based on the Spring and Spring Boot framework, and the system realizes a series of functions such as real-time query, reservation, and cancellation of seat resources, providing users with great convenience. With a simple operation, users can know the availability of seats in the library in real time and reserve them according to their needs. At the same time, the system also provides rich management functions, enabling administrators to easily configure and manage seat resources. The addition, deletion, modification and review of users, the generation of seats, the viewing of user usage records, and the addition or deletion of points for users’ usage can also be carried out. This not only improves the management efficiency, but also provides more scientific and accurate data support for the management of the library. The system not only optimizes the user experience, but also promotes the scientific management and efficient utilization of library resources, and provides strong support for the modern services of the library.展开更多
A machine learning model, using the transformer architecture, is used to design a feedback compensator and prefilter for various simulated plants. The output of the transformer is a sequence of compensator and prefilt...A machine learning model, using the transformer architecture, is used to design a feedback compensator and prefilter for various simulated plants. The output of the transformer is a sequence of compensator and prefilter parameters. The compensator and prefilter are linear models, preserving the ability to analyze the system with linear control theory. The input to the network is a window of recent reference and output samples. The goal of the transformer is to minimize tracking error at each time step. The plants under consideration range from simple to challenging. The more difficult plants contain closely spaced, lightly damped, complex conjugate pairs of poles and zeros. Results are compared to PID controllers tuned for a similar crossover frequency and optimal phase margin. For simple plants, the transformer converges to solutions which overly rely on the prefilter, neglecting the maximization of negative feedback. For more complex plants, the transformer designs a compensator and prefilter with more desirable qualities. In all cases, the transformer can start with random model parameters and modify them to minimize tracking error on the step reference.展开更多
This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijia...This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijiang,strengthen the protection and inheritance of Baisha murals in Lijiang,and change the teaching of art design majors in vocational colleges in Yunnan.Given the lack of traditional Chinese culture and local ethnic culture,this article focuses on the teaching of art design majors in Yunnan vocational colleges.It explores the construction model of the cultural inheritance and innovation carrier of Lijiang Baisha murals to meet the spiritual and cultural needs of the local people,and efforts will be made to promote the high-quality development of the Baisha ethnic area in Lijiang.展开更多
Embedded system design is the core course of the telecommunication major in engineering universities,which combines software and hardware through embedded development boards.Aiming at the problems existing in traditio...Embedded system design is the core course of the telecommunication major in engineering universities,which combines software and hardware through embedded development boards.Aiming at the problems existing in traditional teaching,this paper proposes curriculum teaching reform based on the outcome-based education(OBE)concept,including determining course objectives,reforming teaching modes and methods,and improving the curriculum assessment and evaluation system.After two semesters of practice,this method not only enhances students’learning initiative but also improves teaching quality.展开更多
Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy ...Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.展开更多
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction...Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.展开更多
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between di...Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.展开更多
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo...High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.展开更多
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me...To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.展开更多
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ...Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.展开更多
文摘In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of scientific instruments on board.The system design of Queqiao-2,including mission orbit and transfer orbit design,configuration and layout design,housekeeping and information flow design,power supply and distribution design,GNC and propulsion system design,communication links design,etc.,was accomplished through comprehensive tradeoff and evaluation on technical maturity,availability,schedule,cost,and so on.With a view to reducing development risk,both the platform and relay communication payloads were developed based on significant heritage from previous Queqiao relay satellite and other relevant spacecraft.Queqiao-2 features flexible system architecture to support multiple frequencies,modulations,data rates and software reconfigurations to meet new user requirements.Subsequent to a successful launch on March 20,2024,by means of 5 orbit maneuvers,Queqiao-2 was inserted into a highly elliptical frozen mission orbit around the moon with a 24h period on schedule.Following on-orbit tests and calibrations,Queqiao-2 has possessed the capacity to provide reliable relay communication services to multiple lunar exploration missions,as well as the capacity to perform scientific observations.Under the support of Queqiao-2,Chang′e-6 achieved its ambitious mission goal to collect and return samples from the moon′s mysterious far side.In the meanwhile,Queqiao-2 has also paved the way for the following Chinese lunar exploration missions including Chang′e-7 and Chang′e-8.The design life time of Queqiao-2 is more than 8 years.Benefit from flexibility and extensibility of relay communication system design,it is convenient to provide relay communication services for future lunar exploration missions of both China and other countries.In addition,innovative scientific observations would be performed during the period that no relay communication task is arranged.The system design of Queqiao-2 reflects the development philosophy of technical innovations and inheritance integration.Based on highly flexible and extensible system architecture,multiple and concurrent relay communication mission requirements can be met.It can provide strong supports for future lunar exploration missions.Successful launching,orbit entering and on-orbit tests of Queqiao-2 verified the correct design principle and versatility.By means of Queqiao-2,more innovative scientific outcomes are anticipated and lunar exploration activities can be facilitated.
基金supported by the National Natural Science Foundation of China(Nos.52225403,U2013603,52434004,and 52404365)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)+2 种基金the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015)the National Key Research and Development Program of China(2023YFF0615404)the Scientific Instrument Developing Project of Shenzhen University。
文摘The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
文摘The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose of the independent supervision function is to ensure that the system operates within the scope of procedures and manuals.At present,the function of independent supervision is a difficult and confusing issue for various original equipment manufacturers as well as suppliers,and there is an urgent requirement to put forward relevant requirements and form relevant methods.Based on the above mentioned objective,the basic requirements of the independent supervision function of design assurance system were studied,the problems and deficiencies in the organization,staffing,and methods existing in the current independent supervision function were analyzed,the improvement suggestions and measures for the performance of the independent supervision function from the aspects of the organization,staffing,procedures,and suppliers were put forward.The present work and conclusions provide guidance and direction for the effective operation of the design assurance system.
文摘In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the design of an intelligent learning system for university physics based on cloud computing platforms,and applies this system to teaching environment of university physics.It successfully integrates emerging technologies such as cloud computing,machine learning,and situational awareness,integrates learning context awareness,intelligent recording and broadcasting,resource sharing,learning performance prediction,and content planning and recommendation,and comprehensively improves the quality of university physics teaching.It can optimize the teaching process and deepen intelligent teaching reform,aiming at providing references for the teaching practice of university physics.
基金supported by Innovation Training Program for College Students⁃design of Cocoon Picking Machinery System Based on ADAMS(SA2300001336)。
文摘This project to state cocoon to pick up object,by studying the cocoon stress performance and structure characteristics.On the basis of the picking up work process,vig virtual prototype technology to design and study a kind of mechanical used to cocoon picking,by using ADAMS,Soliworks software to complete the whole process of mechanical system design,simulation,can meet the premise of stable,reliable cocoon picking,and cocoon picking mechanical system design,low cost and simple structure.
文摘The library seating management system is an important part of the library’s modern services. The system is based on the Spring and Spring Boot framework, and the system realizes a series of functions such as real-time query, reservation, and cancellation of seat resources, providing users with great convenience. With a simple operation, users can know the availability of seats in the library in real time and reserve them according to their needs. At the same time, the system also provides rich management functions, enabling administrators to easily configure and manage seat resources. The addition, deletion, modification and review of users, the generation of seats, the viewing of user usage records, and the addition or deletion of points for users’ usage can also be carried out. This not only improves the management efficiency, but also provides more scientific and accurate data support for the management of the library. The system not only optimizes the user experience, but also promotes the scientific management and efficient utilization of library resources, and provides strong support for the modern services of the library.
文摘A machine learning model, using the transformer architecture, is used to design a feedback compensator and prefilter for various simulated plants. The output of the transformer is a sequence of compensator and prefilter parameters. The compensator and prefilter are linear models, preserving the ability to analyze the system with linear control theory. The input to the network is a window of recent reference and output samples. The goal of the transformer is to minimize tracking error at each time step. The plants under consideration range from simple to challenging. The more difficult plants contain closely spaced, lightly damped, complex conjugate pairs of poles and zeros. Results are compared to PID controllers tuned for a similar crossover frequency and optimal phase margin. For simple plants, the transformer converges to solutions which overly rely on the prefilter, neglecting the maximization of negative feedback. For more complex plants, the transformer designs a compensator and prefilter with more desirable qualities. In all cases, the transformer can start with random model parameters and modify them to minimize tracking error on the step reference.
文摘This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijiang,strengthen the protection and inheritance of Baisha murals in Lijiang,and change the teaching of art design majors in vocational colleges in Yunnan.Given the lack of traditional Chinese culture and local ethnic culture,this article focuses on the teaching of art design majors in Yunnan vocational colleges.It explores the construction model of the cultural inheritance and innovation carrier of Lijiang Baisha murals to meet the spiritual and cultural needs of the local people,and efforts will be made to promote the high-quality development of the Baisha ethnic area in Lijiang.
基金This paper is one of the phased achievements of the Education and Teaching Reform Project of Guangdong University of Petrochemical Engineering in 2022(71013413080)the Research and Practice Project of Teaching and Teaching Reform of University-Level Higher Vocational Education in 2023(JY202353).
文摘Embedded system design is the core course of the telecommunication major in engineering universities,which combines software and hardware through embedded development boards.Aiming at the problems existing in traditional teaching,this paper proposes curriculum teaching reform based on the outcome-based education(OBE)concept,including determining course objectives,reforming teaching modes and methods,and improving the curriculum assessment and evaluation system.After two semesters of practice,this method not only enhances students’learning initiative but also improves teaching quality.
文摘Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金S.G.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 52272144,51972076)the Heilongjiang Provincial Natural Science Foundation of China(JQ2022E001)+4 种基金the Natural Science Foundation of Shandong Province(ZR2020ZD42)the Fundamental Research Funds for the Central Universities.H.D.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 22205048)China Postdoctoral Science Foundation(2022M710931 and 2023T160154)Heilongjiang Postdoctoral Science Foundation(LBH-Z22010)G.Y.acknowledges the financial support from the National Science Foundation of Heilongjiang Education Department(324022075).
文摘Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12002073 and 12372122)the National Key Research and Development Plan of China(Grant No.2020YFB 1709401)+2 种基金the Science Technology Plan of Liaoning Province(Grant No.2023JH2/101600044)the Liaoning Revitalization Talents Pro-gram(Grant No.XLYC2001003)111 Project of China(Grant No.B14013).
文摘Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.
基金supported by the National Natural Science Foundation of China(22179041)。
文摘High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.
文摘To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.
文摘Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.