With the sharp increase of China's in-orbit spacecraft and the constraint TT&C resources, a mathematical model for optimal TT&C resource allocation is proposed, and the TT&C facility remote monitoring function is ...With the sharp increase of China's in-orbit spacecraft and the constraint TT&C resources, a mathematical model for optimal TT&C resource allocation is proposed, and the TT&C facility remote monitoring function is designed to achieve the multitask operation pattern under the unified management of the network management center. With this pattern, the TT&C network management and the spacecraft management are separated, which is quite different from the previous pattern. Further, a novel spacecraft TT&C technique based on spacecraft control language is developed, and the telecommanding pattern is designed to address the spacecraft operation problems. The engineering application shows that this pattern fundamentally improves the TT&C network capability, increases the resource efficiency, and satisfies the efficient, accurate, and flexible operation of spacecraft.展开更多
基金supported by the China Postdotoral Science Foundation (20060401004).
文摘With the sharp increase of China's in-orbit spacecraft and the constraint TT&C resources, a mathematical model for optimal TT&C resource allocation is proposed, and the TT&C facility remote monitoring function is designed to achieve the multitask operation pattern under the unified management of the network management center. With this pattern, the TT&C network management and the spacecraft management are separated, which is quite different from the previous pattern. Further, a novel spacecraft TT&C technique based on spacecraft control language is developed, and the telecommanding pattern is designed to address the spacecraft operation problems. The engineering application shows that this pattern fundamentally improves the TT&C network capability, increases the resource efficiency, and satisfies the efficient, accurate, and flexible operation of spacecraft.