Digital technology has driven the innovation of architectural design methods and tools,applying digital techniques to allow greater possibilities for more innovative and scientific design of public building spaces.Thi...Digital technology has driven the innovation of architectural design methods and tools,applying digital techniques to allow greater possibilities for more innovative and scientific design of public building spaces.This article first analyzes the characteristics of digital visualization and its advantages in the design of urban public building spaces,including aspects such as visualizing three-dimensional expression,rational analysis of building space,Virtual Reality Experience,and integration of design and construction processes.Subsequently,by introducing digital design methods such as parametric design,algorithmic generation,nonlinear design,and artificial intelligence-assisted design,it explores the methods and implementation approaches of digital visualization in the design of public building spaces.The aim is to offer insights and references for the deeper integration of digital technology into architectural design practices.展开更多
The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characte...The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.展开更多
This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted...This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.展开更多
A Krylov space based time domain method for wave propagation problems is introduced. The proposed method uses the Arnoldi algorithm to obtain broad-band frequency domain solutions. This method is especially advantageo...A Krylov space based time domain method for wave propagation problems is introduced. The proposed method uses the Arnoldi algorithm to obtain broad-band frequency domain solutions. This method is especially advantageous in cases where slow convergence is observed when using traditional time domain methods. The efficiency of the method is examined in several test cases to show its fast convergence in such problems.展开更多
Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved thro...Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved through using space-time continuous fully discrete finite element methods and the electron nearly conservation with higher order error was obtained through using time discontinuous only space continuous finite element methods of nonlinear Schrodinger partial equation. The numerical results are in accordance with the theory.展开更多
Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference ...Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L-infinity (L-2) norm, that is maximum-norm in time, L-2-norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.展开更多
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order...A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.展开更多
The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzma...The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold (hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space-time fractional KdV-Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated.展开更多
In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I focus on the concept of motion and show that, by distinguishing two different forms of motion, Zeno’s apparent paradoxes are not paradoxical...In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I focus on the concept of motion and show that, by distinguishing two different forms of motion, Zeno’s apparent paradoxes are not paradoxical at all. Zeno’s paradoxes indirectly prove that distances are not composed of extensionless points and, in general, that a higher dimension cannot be completely composed of lower ones. Conversely, lower dimensions can be understood as special cases of higher dimensions. To illustrate this approach, I consider Cantor’s only apparent proof that the real numbers are uncountable. However, his widely accepted indirect proof has the disadvantage that it depends on whether there is another way to make the real numbers countable. Cantor rightly assumes that there can be no smallest number between 0 and 1, and therefore no beginning of counting. For this reason he arbitrarily lists the real numbers in order to show with his diagonal method that this list can never be complete. The situation is different if we start with the largest number between 0 and 1 (0.999…) and use the method of an inverted triangle, which can be understood as a special fractal form. Here we can construct a vertical and a horizontal stratification with which it is actually possible to construct all real numbers between 0 and 1 without exception. Each column is infinite, and each number in that column is the starting point of a new triangle, while each row is finite. Even in a simple sine curve, we experience finiteness with respect to the y-axis and infinity with respect to the x-axis. The first parts of this article show that Zeno’s assumptions contradict the concept of motion as such, so it is not surprising that this misconstruction leads to contradictions. In the last part, I discuss Cantor’s diagonal method and explain the method of an inverted triangle that is internally structured like a fractal by repeating this inverted triangle at each column. The consequence is that we encounter two very different methods of counting. Vertically it is continuous, horizontally it is discrete. While Frege, Tarski, Cantor, Gödel and the Vienna Circle tried to derive the higher dimension from the lower, a procedure that always leads to new contradictions and antinomies (Tarski, Russell), I take the opposite approach here, in which I derive the lower dimension from the higher. This perspective seems to fail because Tarski, Russell, Wittgenstein, and especially the Vienna Circle have shown that the completeness of the absolute itself is logically contradictory. For this reason, we agree with Hegel in assuming that we can never fully comprehend the Absolute, but only its particular manifestations—otherwise we would be putting ourselves in the place of the Absolute, or even God. Nevertheless, we can understand the Absolute in its particular expressions, as I will show with the modest example of the triangle proof of the combined horizontal and vertical countability of the real numbers, which I developed in rejection of Cantor’s diagonal proof. .展开更多
A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.Th...A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.展开更多
Time and Space Thinking that is composed of time and space thinking is brought up in civil engineering. This paper makes a detailed analysis on application and role of time and space thinking in knowledge system and l...Time and Space Thinking that is composed of time and space thinking is brought up in civil engineering. This paper makes a detailed analysis on application and role of time and space thinking in knowledge system and learning method of civil engineering and put forward time and space thinking to be similar with philosophical view of time and space. Time and space thinking is a scientific method, therefore, it is suggested to make students active in having such idea and strengthen students' understanding on time and space thinking, which will helping students recognize knowledge system and stimulate innovative abilities.展开更多
An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the s...An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L∞ (H1) norm is derived. The numerical exper- iments are presented to verify the theoretical results.展开更多
In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability...In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability and error estimate of order O?τr+1+hk+1/2? are obtained when polynomials of degree at most r and k are used for the temporal dis-cretization and spatial discretization respectively. 2-D and 3-D numerical examples are given to validate the theoretical results. Moreover, numerical results show an ultra-convergence of order 2r+1 in temporal variable t.展开更多
A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding...A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.展开更多
The choice of methods or design languages is a crucial phase in the development of systems and software, also for real time and embedded systems. An open question that remains in the design of these types of systems i...The choice of methods or design languages is a crucial phase in the development of systems and software, also for real time and embedded systems. An open question that remains in the design of these types of systems is to build a method, or to choose one among those existing, capable to cover the life cycle of a project, and particularly the development phases. This article contributes to answer the question, by proposing an approach based on a multi-criteria comparative study, of few languages and methods dedicated to the design of real time and embedded systems. The underlying objective of this work is to present to designers a wide range of approaches, and elements that can guide their choices. In order to reach this goal, we propose different comparison criteria. Each criterion is divided into sub-criteria, so that the designers can refine their choices according to the qualities they prefer and wish to have in the method or language. We also define a rating scale which is used to assess the retained languages and methods. The scores obtained from this assessment are presented in tables, one table per criterion, followed by a summary table giving the overall scores. Graphics built from these tables are provided and intend to facilitate the judgement and thus the choice of the designers.展开更多
This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the...This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.展开更多
In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wa...In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.展开更多
For tracking spacecraft and performing radio science, the transformation between the proper time (τ) given by a clock carried onboard a spacecraft and the barycentric coordinate time (TCB) is investigated under I...For tracking spacecraft and performing radio science, the transformation between the proper time (τ) given by a clock carried onboard a spacecraft and the barycentric coordinate time (TCB) is investigated under IAU resolutions. In order to more clearly demonstrate manifestations of a physical model and improve computa- tional efficiency, an analytic approach is adopted. After numerical verification, it is confirmed that this method is adequate to describe a Mars orbiter during one year, and is particularly good at describing the influence from perturbing bodies. Further analyses demonstrate that there are two main effects in the transformation: the gravi- tational field of the Sun and the velocity of the spacecraft in the barycentric coordinate reference system. The combined contribution of these effects is at the level of a few sub-seconds.展开更多
In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time ^- of a clock o...In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time ^- of a clock onboard a spacecraft orbiting Mars and the Barycentric Coordinate Time (TCB) by taking the clock offset into ac- count and investigate its accessibility by Fourier analysis on the residuals after fitting the ^--TCB curve in terms of n-th order polynomials. We find that if the accuracy of a clock can achieve better than ~ 10-5 s or ~ 10-6 s (depending on the type of clock offset) in one year after calibration, the relativistic effects on the difference between 7- and TCB will need to be carefully considered.展开更多
文摘Digital technology has driven the innovation of architectural design methods and tools,applying digital techniques to allow greater possibilities for more innovative and scientific design of public building spaces.This article first analyzes the characteristics of digital visualization and its advantages in the design of urban public building spaces,including aspects such as visualizing three-dimensional expression,rational analysis of building space,Virtual Reality Experience,and integration of design and construction processes.Subsequently,by introducing digital design methods such as parametric design,algorithmic generation,nonlinear design,and artificial intelligence-assisted design,it explores the methods and implementation approaches of digital visualization in the design of public building spaces.The aim is to offer insights and references for the deeper integration of digital technology into architectural design practices.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant No.2021JBM021)National Natural Science Foundation of China(Grant Nos.52202431,52172353).
文摘The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.
文摘This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.
文摘A Krylov space based time domain method for wave propagation problems is introduced. The proposed method uses the Arnoldi algorithm to obtain broad-band frequency domain solutions. This method is especially advantageous in cases where slow convergence is observed when using traditional time domain methods. The efficiency of the method is examined in several test cases to show its fast convergence in such problems.
基金Project supported by the National Basic Research Program of China (973 program) (No.G1999032804)
文摘Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved through using space-time continuous fully discrete finite element methods and the electron nearly conservation with higher order error was obtained through using time discontinuous only space continuous finite element methods of nonlinear Schrodinger partial equation. The numerical results are in accordance with the theory.
文摘Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L-infinity (L-2) norm, that is maximum-norm in time, L-2-norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.
基金supported by the National Natural Science Foundation of China (No. 10601022)NSF ofInner Mongolia Autonomous Region of China (No. 200607010106)513 and Science Fund of InnerMongolia University for Distinguished Young Scholars (No. ND0702)
文摘A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.
文摘The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold (hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space-time fractional KdV-Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated.
文摘In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I focus on the concept of motion and show that, by distinguishing two different forms of motion, Zeno’s apparent paradoxes are not paradoxical at all. Zeno’s paradoxes indirectly prove that distances are not composed of extensionless points and, in general, that a higher dimension cannot be completely composed of lower ones. Conversely, lower dimensions can be understood as special cases of higher dimensions. To illustrate this approach, I consider Cantor’s only apparent proof that the real numbers are uncountable. However, his widely accepted indirect proof has the disadvantage that it depends on whether there is another way to make the real numbers countable. Cantor rightly assumes that there can be no smallest number between 0 and 1, and therefore no beginning of counting. For this reason he arbitrarily lists the real numbers in order to show with his diagonal method that this list can never be complete. The situation is different if we start with the largest number between 0 and 1 (0.999…) and use the method of an inverted triangle, which can be understood as a special fractal form. Here we can construct a vertical and a horizontal stratification with which it is actually possible to construct all real numbers between 0 and 1 without exception. Each column is infinite, and each number in that column is the starting point of a new triangle, while each row is finite. Even in a simple sine curve, we experience finiteness with respect to the y-axis and infinity with respect to the x-axis. The first parts of this article show that Zeno’s assumptions contradict the concept of motion as such, so it is not surprising that this misconstruction leads to contradictions. In the last part, I discuss Cantor’s diagonal method and explain the method of an inverted triangle that is internally structured like a fractal by repeating this inverted triangle at each column. The consequence is that we encounter two very different methods of counting. Vertically it is continuous, horizontally it is discrete. While Frege, Tarski, Cantor, Gödel and the Vienna Circle tried to derive the higher dimension from the lower, a procedure that always leads to new contradictions and antinomies (Tarski, Russell), I take the opposite approach here, in which I derive the lower dimension from the higher. This perspective seems to fail because Tarski, Russell, Wittgenstein, and especially the Vienna Circle have shown that the completeness of the absolute itself is logically contradictory. For this reason, we agree with Hegel in assuming that we can never fully comprehend the Absolute, but only its particular manifestations—otherwise we would be putting ourselves in the place of the Absolute, or even God. Nevertheless, we can understand the Absolute in its particular expressions, as I will show with the modest example of the triangle proof of the combined horizontal and vertical countability of the real numbers, which I developed in rejection of Cantor’s diagonal proof. .
基金funded by the research project STiMulUs,ERC Grant agreement no.278267Financial support has also been provided by the Italian Ministry of Education,University and Research(MIUR)in the frame of the Departments of Excellence Initiative 2018-2022 attributed to DICAM of the University of Trento(Grant L.232/2016)the PRIN2017 project.The authors have also received funding from the University of Trento via the Strategic Initiative Modeling and Simulation.
文摘A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.
文摘Time and Space Thinking that is composed of time and space thinking is brought up in civil engineering. This paper makes a detailed analysis on application and role of time and space thinking in knowledge system and learning method of civil engineering and put forward time and space thinking to be similar with philosophical view of time and space. Time and space thinking is a scientific method, therefore, it is suggested to make students active in having such idea and strengthen students' understanding on time and space thinking, which will helping students recognize knowledge system and stimulate innovative abilities.
基金Project supported by the National Natural Science Foundation of China (No. 11061021)the Inner Mongolia College Research Project (No. NJ10006)the Natural Science Foundation of Inner Mongolia of China (No. 2012MS0106)
文摘An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L∞ (H1) norm is derived. The numerical exper- iments are presented to verify the theoretical results.
基金supported by NSFC(11341002)NSFC(11171104,10871066)+1 种基金the Construct Program of the Key Discipline in Hunansupported in part by US National Science Foundation under Grant DMS-1115530
文摘In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability and error estimate of order O?τr+1+hk+1/2? are obtained when polynomials of degree at most r and k are used for the temporal dis-cretization and spatial discretization respectively. 2-D and 3-D numerical examples are given to validate the theoretical results. Moreover, numerical results show an ultra-convergence of order 2r+1 in temporal variable t.
基金Supported by the Foundation of Huaian Industrial Projects(HAG2013064)the Foundation of Huaiyin Institute of Technology(HGB1202)the Doctoral Fund of Ministry of Education of China(20093218120021)
文摘A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.
文摘The choice of methods or design languages is a crucial phase in the development of systems and software, also for real time and embedded systems. An open question that remains in the design of these types of systems is to build a method, or to choose one among those existing, capable to cover the life cycle of a project, and particularly the development phases. This article contributes to answer the question, by proposing an approach based on a multi-criteria comparative study, of few languages and methods dedicated to the design of real time and embedded systems. The underlying objective of this work is to present to designers a wide range of approaches, and elements that can guide their choices. In order to reach this goal, we propose different comparison criteria. Each criterion is divided into sub-criteria, so that the designers can refine their choices according to the qualities they prefer and wish to have in the method or language. We also define a rating scale which is used to assess the retained languages and methods. The scores obtained from this assessment are presented in tables, one table per criterion, followed by a summary table giving the overall scores. Graphics built from these tables are provided and intend to facilitate the judgement and thus the choice of the designers.
基金supported by the China Postdotoral Science Foundation(20060401004)
文摘This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.
文摘In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.
基金funded by the National Natural Science Foundation of China (Grant Nos. 11103085 and 11178006)
文摘For tracking spacecraft and performing radio science, the transformation between the proper time (τ) given by a clock carried onboard a spacecraft and the barycentric coordinate time (TCB) is investigated under IAU resolutions. In order to more clearly demonstrate manifestations of a physical model and improve computa- tional efficiency, an analytic approach is adopted. After numerical verification, it is confirmed that this method is adequate to describe a Mars orbiter during one year, and is particularly good at describing the influence from perturbing bodies. Further analyses demonstrate that there are two main effects in the transformation: the gravi- tational field of the Sun and the velocity of the spacecraft in the barycentric coordinate reference system. The combined contribution of these effects is at the level of a few sub-seconds.
基金Supported by the National Natural Science Foundation of China
文摘In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time ^- of a clock onboard a spacecraft orbiting Mars and the Barycentric Coordinate Time (TCB) by taking the clock offset into ac- count and investigate its accessibility by Fourier analysis on the residuals after fitting the ^--TCB curve in terms of n-th order polynomials. We find that if the accuracy of a clock can achieve better than ~ 10-5 s or ~ 10-6 s (depending on the type of clock offset) in one year after calibration, the relativistic effects on the difference between 7- and TCB will need to be carefully considered.