Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately ...Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately 604000 new cases of esophageal cancer,resulting in 544000 deaths.The 5-year survival rate hovers around a mere 15%-25%.Notably,distinct variations exist in the risk factors associated with the two primary histological types,influencing their worldwide incidence and distribution.Squamous cell carcinoma displays a high incidence in specific regions,such as certain areas in China,where it meets the cost-effect-iveness criteria for widespread endoscopy-based early diagnosis within the local population.Conversely,adenocarcinoma(EAC)represents the most common histological subtype of esophageal cancer in Europe and the United States.The role of early diagnosis in cases of EAC originating from Barrett's esophagus(BE)remains a subject of controversy.The effectiveness of early detection for EAC,particularly those arising from BE,continues to be a debated topic.The variations in how early-stage esophageal carcinoma is treated in different regions are largely due to the differing rates of early-stage cancer diagnoses.In areas with higher incidences,such as China and Japan,early diagnosis is more common,which has led to the advancement of endoscopic methods as definitive treatments.These techniques have demonstrated remarkable efficacy with minimal complications while preserving esophageal functionality.Early screening,prompt diagnosis,and timely treatment are key strategies that can significantly lower both the occurrence and death rates associated with esophageal cancer.展开更多
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b...As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.展开更多
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ...As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.展开更多
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman...Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.展开更多
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the...The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic...For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.展开更多
As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocrea...As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.展开更多
Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-s...Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.展开更多
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig...Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.展开更多
基金Supported by Shandong Province Medical and Health Science and Technology Development Plan Project,No.202203030713Clinical Research Funding of Shandong Medical Association-Qilu Specialization,No.YXH2022ZX02031Science and Technology Program of Yantai Affiliated Hospital of Binzhou Medical University,No.YTFY2022KYQD06.
文摘Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately 604000 new cases of esophageal cancer,resulting in 544000 deaths.The 5-year survival rate hovers around a mere 15%-25%.Notably,distinct variations exist in the risk factors associated with the two primary histological types,influencing their worldwide incidence and distribution.Squamous cell carcinoma displays a high incidence in specific regions,such as certain areas in China,where it meets the cost-effect-iveness criteria for widespread endoscopy-based early diagnosis within the local population.Conversely,adenocarcinoma(EAC)represents the most common histological subtype of esophageal cancer in Europe and the United States.The role of early diagnosis in cases of EAC originating from Barrett's esophagus(BE)remains a subject of controversy.The effectiveness of early detection for EAC,particularly those arising from BE,continues to be a debated topic.The variations in how early-stage esophageal carcinoma is treated in different regions are largely due to the differing rates of early-stage cancer diagnoses.In areas with higher incidences,such as China and Japan,early diagnosis is more common,which has led to the advancement of endoscopic methods as definitive treatments.These techniques have demonstrated remarkable efficacy with minimal complications while preserving esophageal functionality.Early screening,prompt diagnosis,and timely treatment are key strategies that can significantly lower both the occurrence and death rates associated with esophageal cancer.
基金supported in part by the National Natural Science Foundation of China under Grants 32171909,51705365,52205254The Guangdong Basic and Applied Basic Research Foundation under Grants 2020B1515120050,2023A1515011255+2 种基金The Guangdong Key R&D projects under Grant 2020B0404030001the Scientific Research Projects of Universities in Guangdong Province under Grant 2020KCXTD015The Ji Hua Laboratory Open Project under Grant X220931UZ230.
文摘As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.
基金supported by the Meteorological Soft Science Project(Grant No.2023ZZXM29)the Natural Science Fund Project of Tianjin,China(Grant No.21JCYBJC00740)the Key Research and Development-Social Development Program of Jiangsu Province,China(Grant No.BE2021685).
文摘As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.
基金This research was funded by the Natural Science Foundation of Hebei Province(F2021506004).
文摘Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.
文摘The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金Scientific Research Fund of Liaoning Provincial Education Department(No.JGLX2021030):Research on Vision-Based Intelligent Perception Technology for the Survival of Benthic Organisms.
文摘For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.
基金the National Natural Science Foundation of China(No.62302540)with author F.F.S.For more information,please visit their website at https://www.nsfc.gov.cn/.Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+1 种基金where F.F.S is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/.The research is also supported by the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422)for more information,you can visit https://kjt.henan.gov.cn/2022/09-02/2599082.html.Lastly,it receives funding from the Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018),where F.F.S is an author.You can find more information at https://www.zut.edu.cn/.
文摘As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.
基金financially supported by the National Natural Science Foundation of China(31972149)funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnologythe Dodd-Walls Centre for Photonic and Quantum Technologies。
文摘Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.
基金National Natural Science Foundation of China(No.42271416)Guangxi Science and Technology Major Project(No.AA22068072)Shennongjia National Park Resources Comprehensive Investigation Research Project(No.SNJNP2023015).
文摘Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.