期刊文献+
共找到229,111篇文章
< 1 2 250 >
每页显示 20 50 100
基于NXMCD的虚实映射实验交互系统设计与实践 被引量:1
1
作者 郭辰光 范建成 +3 位作者 岳海涛 李强 戴卫兵 孙瑜 《实验技术与管理》 CAS 北大核心 2024年第3期123-130,共8页
该文基于数字孪生理念,结合NX MCD机电概念设计、PLC编程与控制和LabVIEW的图形化编程手段,完成了基于NX MCD的虚实映射实验交互系统设计与实践。以LabVIEW设计的UI界面为控制监测端,物理对象与MCD虚拟模型为执行端,实现了物理对象与MC... 该文基于数字孪生理念,结合NX MCD机电概念设计、PLC编程与控制和LabVIEW的图形化编程手段,完成了基于NX MCD的虚实映射实验交互系统设计与实践。以LabVIEW设计的UI界面为控制监测端,物理对象与MCD虚拟模型为执行端,实现了物理对象与MCD虚拟模型的虚实映射,同时MCD虚拟模型能够输出控制信号进而控制物理对象。在此基础上,设计了步进电机往复运动与MCD虚拟模型虚实映射实验案例。该实验案例可为本科生和研究生相关课程的实践教学提供虚实映射交互实验方法和手段,可显著提升学生的创新实践能力与水平,是对数字化实践教学研究的一次探索。 展开更多
关键词 虚实映射 数字孪生 实验交互系统 mcd虚拟模型
下载PDF
基于NX MCD的曲轴自动生产线数字孪生系统设计 被引量:1
2
作者 杨敬娜 郝克明 冯贺平 《集成电路应用》 2024年第2期146-147,共2页
阐述基于NX MCD的曲轴自动生产线数字孪生系统设计,通过数字化建模、虚拟仿真和优化算法,实现对生产线的实时监测、预测和优化,实现曲轴生产线的数字化转型。
关键词 自动生产线 NX mcd 数字孪生 PLC
下载PDF
基于改进Detection Transformer的棉花幼苗与杂草检测模型研究
3
作者 冯向萍 杜晨 +3 位作者 李永可 张世豪 舒芹 赵昀杰 《计算机与数字工程》 2024年第7期2176-2182,共7页
基于深度学习的目标检测技术在棉花幼苗与杂草检测领域已取得一定进展。论文提出了基于改进Detection Transformer的棉花幼苗与杂草检测模型,以提高杂草目标检测的准确率和效率。首先,引入了可变形注意力模块替代原始模型中的Transforme... 基于深度学习的目标检测技术在棉花幼苗与杂草检测领域已取得一定进展。论文提出了基于改进Detection Transformer的棉花幼苗与杂草检测模型,以提高杂草目标检测的准确率和效率。首先,引入了可变形注意力模块替代原始模型中的Transformer注意力模块,提高模型对特征图目标形变的处理能力。提出新的降噪训练机制,解决了二分图匹配不稳定问题。提出混合查询选择策略,提高解码器对目标类别和位置信息的利用效率。使用Swin Transformer作为网络主干,提高模型特征提取能力。通过对比原网络,论文提出的模型方法在训练过程中表现出更快的收敛速度,并且在准确率方面提高了6.7%。 展开更多
关键词 目标检测 detection Transformer 棉花幼苗 杂草检测
下载PDF
基于MCD的龙门机械臂抛光机的运动仿真
4
作者 陈星旭 冯贺平 陈春亮 《河北软件职业技术学院学报》 2024年第1期24-26,41,共4页
龙门机械臂结构具有运动灵活性高,有效工作范围广和加工零件适应性强等优点,将此结构用于抛光工艺可以提高加工效率并提升加工质量。利用NX软件中机电概念设计模块(MCD)可以快速有效地进行龙门机械臂抛光机数字样机设计。通过规划抛光... 龙门机械臂结构具有运动灵活性高,有效工作范围广和加工零件适应性强等优点,将此结构用于抛光工艺可以提高加工效率并提升加工质量。利用NX软件中机电概念设计模块(MCD)可以快速有效地进行龙门机械臂抛光机数字样机设计。通过规划抛光头中心点的运动轨迹,软件可以自动计算出龙门导轨与机械臂各个关节轴的实时位移量。龙门机械臂抛光机的数字模型和运动仿真数据为实体样机的生产和运动控制提供了关键的参考数据。 展开更多
关键词 龙门机械臂 抛光机 mcd 运动仿真
下载PDF
基于NX MCD的TWS蓝牙耳机充电仓磁铁装配自动线数字孪生体开发设计
5
作者 付婕 《科技创新与应用》 2024年第22期26-31,共6页
基于NX MCD的TWS蓝牙耳机充电仓磁铁装配自动线数字孪生体设计项目,针对当前TWS蓝牙耳机市场的需求,开展基于NX MCD的TWS蓝牙耳机充电盒装配自动线数字孪生体设计研究,利用西门子数字孪生软件NX MCD(机电一体化概念设计软件)、TIA(PLC... 基于NX MCD的TWS蓝牙耳机充电仓磁铁装配自动线数字孪生体设计项目,针对当前TWS蓝牙耳机市场的需求,开展基于NX MCD的TWS蓝牙耳机充电盒装配自动线数字孪生体设计研究,利用西门子数字孪生软件NX MCD(机电一体化概念设计软件)、TIA(PLC编程软件)、PLCsim Advanced(PLC高级仿真软件)完成TWS蓝牙耳机充电盒装配自动线数字孪生体机械模型的设计、PLC程序设计,并进行TWS蓝牙耳机充电盒装配线设备开发的技术创新、优化和验证控制方案,研究和设计具有安装容易、柔性化优等优点的装配线,并总结其特点,将此解决方案应用至其他各类异形插件生产线的开发生产中,服务3C数码企业生产,促进企业的数字化节能、创新、转型和发展。 展开更多
关键词 数字孪生 蓝牙耳机 自动线 NX mcd PLC
下载PDF
基于MCD的茶叶生产线数字孪生映射技术
6
作者 李启云 李玮 《林业机械与木工设备》 2024年第7期48-51,共4页
为了提高生产效率、降低成本、提高产品质量,改善茶叶生产线在设计和运行过程中的容错率和效率,节约生产时间,将数字孪生技术和茶叶生产线进行了融合研究,主要介绍了茶叶压饼生产线的工艺流程和特点,并利用NXMCD数字孪生技术对生产线进... 为了提高生产效率、降低成本、提高产品质量,改善茶叶生产线在设计和运行过程中的容错率和效率,节约生产时间,将数字孪生技术和茶叶生产线进行了融合研究,主要介绍了茶叶压饼生产线的工艺流程和特点,并利用NXMCD数字孪生技术对生产线进行数字孪生构建。从基本对象设置、添加运动副、设置传感器、设置信号输出和虚实映射几个方面进行了研究。为茶叶生产企业的可持续发展提供技术支持和帮助。 展开更多
关键词 茶叶生产线 数字孪生 mcd 虚实映射
下载PDF
基于NX/MCD光机电一体化数字孪生体虚拟实训平台的开发
7
作者 王飞 唐伟强 《机电工程技术》 2024年第6期24-28,共5页
根据职业院校机电一体化实训现状与需求,借鉴数字孪生技术的实践经验,提出了数字孪生机电一体化实训平台的开发思路。基于西门子NX/MCD,以原有的INGO-558光机电一体化实体设备为例,阐述了光机电一体化设备的组成、运动流程;运用SolidWor... 根据职业院校机电一体化实训现状与需求,借鉴数字孪生技术的实践经验,提出了数字孪生机电一体化实训平台的开发思路。基于西门子NX/MCD,以原有的INGO-558光机电一体化实体设备为例,阐述了光机电一体化设备的组成、运动流程;运用SolidWorks 2019绘制三维模型;应用西门子NX/MCD软件配置三维模型机电属性、设置信号;利用博途(TIA)软件建立模型MCD信号和PLC变量连接;编写PLC程序,配置PLC硬件平台、网络通信、工艺流程程序以及设计HMI界面;编译程序后,利用PLCsim Advanced下载程序,启动SIMIT仿真验证PLC程序的正确性以及机械结构设计的合理性。当出现与预期不同的情况时,检查PLC程序运行状况和MCD中信号触发情况及仿真序列运行情况,根据对应错误进行修改;当符合预期时,将程序下载至设备的PLC中,快速完成对设备的调试。 展开更多
关键词 NX/mcd 数字孪生 机电一体化实训
下载PDF
基于NX MCD与TIA的光伏电池组件追逐光源的虚拟调试研究 被引量:1
8
作者 郭俊梅 李乔才 赵文铜 《南方农机》 2024年第14期35-39,共5页
文章利用NX MCD和TIA软件,以全国职业院校技能大赛“风光互补系统安装与调试”赛项的光伏电池组件为模型,设计了一种虚拟调试与概念设计并行的虚拟系统。该系统可为“风光互补系统安装与调试”赛项提供赛前仿真培训,解决大中专院校缺少... 文章利用NX MCD和TIA软件,以全国职业院校技能大赛“风光互补系统安装与调试”赛项的光伏电池组件为模型,设计了一种虚拟调试与概念设计并行的虚拟系统。该系统可为“风光互补系统安装与调试”赛项提供赛前仿真培训,解决大中专院校缺少参赛设备的问题以及日常PLC课程教学缺少控制对象的问题。该虚拟调试技术为光伏发电系统的研究提供了一种新的方法,有助于提高光伏发电系统的性能和效率。 展开更多
关键词 数字孪生 机电一体化概念设计(mcd) 可编程逻辑控制器(PLC) 光伏电池组件
下载PDF
Esophageal cancer screening,early detection and treatment:Current insights and future directions 被引量:3
9
作者 Hong-Tao Qu Qing Li +7 位作者 Liang Hao Yan-Jing Ni Wen-Yu Luan Zhe Yang Xiao-Dong Chen Tong-Tong Zhang Yan-Dong Miao Fang Zhang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1180-1191,共12页
Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately ... Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately 604000 new cases of esophageal cancer,resulting in 544000 deaths.The 5-year survival rate hovers around a mere 15%-25%.Notably,distinct variations exist in the risk factors associated with the two primary histological types,influencing their worldwide incidence and distribution.Squamous cell carcinoma displays a high incidence in specific regions,such as certain areas in China,where it meets the cost-effect-iveness criteria for widespread endoscopy-based early diagnosis within the local population.Conversely,adenocarcinoma(EAC)represents the most common histological subtype of esophageal cancer in Europe and the United States.The role of early diagnosis in cases of EAC originating from Barrett's esophagus(BE)remains a subject of controversy.The effectiveness of early detection for EAC,particularly those arising from BE,continues to be a debated topic.The variations in how early-stage esophageal carcinoma is treated in different regions are largely due to the differing rates of early-stage cancer diagnoses.In areas with higher incidences,such as China and Japan,early diagnosis is more common,which has led to the advancement of endoscopic methods as definitive treatments.These techniques have demonstrated remarkable efficacy with minimal complications while preserving esophageal functionality.Early screening,prompt diagnosis,and timely treatment are key strategies that can significantly lower both the occurrence and death rates associated with esophageal cancer. 展开更多
关键词 Esophageal cancer SCREENING Early detection Treatment Endoscopic mucosal resection Endoscopic submucosal dissection
下载PDF
YOLO-DD:Improved YOLOv5 for Defect Detection 被引量:1
10
作者 Jinhai Wang Wei Wang +4 位作者 Zongyin Zhang Xuemin Lin Jingxian Zhao Mingyou Chen Lufeng Luo 《Computers, Materials & Continua》 SCIE EI 2024年第1期759-780,共22页
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b... As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection. 展开更多
关键词 YOLO-DD defect detection feature fusion attention mechanism
下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
11
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer 被引量:1
12
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAV images TRANSFORMER dense small object detection
下载PDF
An Intelligent SDN-IoT Enabled Intrusion Detection System for Healthcare Systems Using a Hybrid Deep Learning and Machine Learning Approach 被引量:1
13
作者 R Arthi S Krishnaveni Sherali Zeadally 《China Communications》 SCIE CSCD 2024年第10期267-287,共21页
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the... The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches. 展开更多
关键词 deep neural network healthcare intrusion detection system IOT machine learning software-defined networks
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
14
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7 被引量:1
15
作者 Liqiu Ren Zhanying Li +2 位作者 Xueyu He Lingyan Kong Yinghao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2829-2845,共17页
For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic... For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection. 展开更多
关键词 Deep learning underwater object detection improved YOLOv7 attention mechanism
下载PDF
Multimodal Social Media Fake News Detection Based on Similarity Inference and Adversarial Networks 被引量:1
16
作者 Fangfang Shan Huifang Sun Mengyi Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期581-605,共25页
As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocrea... As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news. 展开更多
关键词 Fake news detection attention mechanism image-text similarity multimodal feature fusion
下载PDF
A core-satellite self-assembled SERS aptasensor containing a“biological-silent region”Raman tag for the accurate and ultrasensitive detection of histamine 被引量:1
17
作者 Chen Chen Yingfang Zhang +3 位作者 Ximo Wang Xuguang Qiao Geoffrey I.N.Waterhouse Zhixiang Xu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1029-1039,共11页
Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-s... Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices. 展开更多
关键词 Surface-enhanced Raman spectroscopy Raman biological-silent region APTAMER Histamine detection Universal SERS-tag
下载PDF
基于MCD的物料分拣搬运装置设计与仿真调试 被引量:1
18
作者 范然然 刘方平 俞宗薏 《南方农机》 2024年第5期26-29,共4页
机电产品开发前期运用机电一体化概念设计(MCD)对新产品进行虚拟调试验证,是验证新产品开发可行性的有效手段。项目组基于AHK机电一体化综合考试实训装置,利用MCD软件对装置进行改进设计,得到物料分拣搬运装置模型,结合TIA和S7-PLCSIM A... 机电产品开发前期运用机电一体化概念设计(MCD)对新产品进行虚拟调试验证,是验证新产品开发可行性的有效手段。项目组基于AHK机电一体化综合考试实训装置,利用MCD软件对装置进行改进设计,得到物料分拣搬运装置模型,结合TIA和S7-PLCSIM Advanced对改进后的装置虚拟样机进行虚拟调试。仿真结果表明,基于MCD的方法可以将所设计的物料分拣搬运装置在机械结构及电气控制等层面进行较为真实的仿真运行,为机电产品的开发调试提供有效的借鉴。为满足在现阶段实训设备不足情况下进行机电设备装调教学,提供了重要的技术支持。 展开更多
关键词 mcd 物料分拣搬运装置 虚拟调试
下载PDF
Real-time Rescue Target Detection Based on UAV Imagery for Flood Emergency Response 被引量:1
19
作者 ZHAO Bofei SUI Haigang +2 位作者 ZHU Yihao LIU Chang WANG Wentao 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期74-89,共16页
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig... Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue. 展开更多
关键词 UAV flood extraction target rescue detection real time
下载PDF
基于NX MCD智能分拣数字孪生系统的设计与实现
20
作者 张静 袁振文 李小燕 《北京工业职业技术学院学报》 2024年第4期6-11,共6页
针对制造业中多材质、多颜色物料人工分拣效率低、出错率高的问题,以及实时性和可视化等要求,基于NXMCD设计了一个智能分拣数字孪生系统。在NX MCD中完成结构建模与机电概念设计,构建数字孪生系统,在TIA Portal中完成PLC控制程序与HMI... 针对制造业中多材质、多颜色物料人工分拣效率低、出错率高的问题,以及实时性和可视化等要求,基于NXMCD设计了一个智能分拣数字孪生系统。在NX MCD中完成结构建模与机电概念设计,构建数字孪生系统,在TIA Portal中完成PLC控制程序与HMI人机界面设计,并通过OPCUA通信使数字孪生系统与实体系统进行实时数据交换,最终实现物料智能分拣的虚实同步作业。实验结果证明:系统物料分拣正确率和效率较高,虚实动作一致,能够满足实时监测与可视化控制要求。 展开更多
关键词 数字孪生 智能分拣 机电概念设计 虚实同步作业
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部