With the aim of addressing the visual positioning problem of board-to-board(BTB)jacks during the automatic assembly of flexible printed circuit(FPC)in mobile phones,an FPC-BTB jack detection method based on the optimi...With the aim of addressing the visual positioning problem of board-to-board(BTB)jacks during the automatic assembly of flexible printed circuit(FPC)in mobile phones,an FPC-BTB jack detection method based on the optimized You Only Look Once,version 5(YOLOv5)deep learning algorithm was proposed in this study.An FPC-BTB jack real-time detection and positioning system was developed for the real-time target detection and pose output synchronization of the BTB jack.On that basis,a visual positioning experimental platform that integrated a UR5e manipulator arm and Hikvision industrial camera was built for BTB jack detection and positioning experiments.As indicated by the experimental results,the developed FPC-BTB jack detection and positioning system for BTB target recognition and positioning achieved a success rate of 99.677%.Its average detection accuracy reached 99.341%,the average confidence of the detected target was 91%,the detection and positioning speed reached 31.25 frames per second,and the positioning deviation was less than 0.93 mm,which conforms to the practical application requirements of the FPC assembly process.展开更多
A small and weak target detection method is proposed in this work that outperforms all other methods in terms of real-time capability.It is the first time that two-dimensional(2D)images are processed using only one-di...A small and weak target detection method is proposed in this work that outperforms all other methods in terms of real-time capability.It is the first time that two-dimensional(2D)images are processed using only one-dimensional1D structuring elements in a morphology-based approach,enabling the real-time hardware implementation of the whole image processing method.A parallel image readout and processing structure is introduced to achieve an ultra-low latency time on the order of nanoseconds,and a hyper-frame resolution in the time domain can be achieved by combining the row-by-row structure and the electrical rolling shutter technique.Experimental results suggest that the expected target can be successfully detected under various interferences with an accuracy of 0.1 pixels(1σ)under the worst sky night test condition and that a centroiding precision of better than 0.03 pixels(1σ)can be reached for static tests.The real-time detection method with high robustness and accuracy is attractive for application to all types of real-time small target detection systems,such as medical imaging,infrared surveillance,and target measurement and tracking,where an ultra-high processing speed is required.展开更多
基金supported by the NSFC-Shenzhen Robot Basic Research Center project(U2013204)the National Natural Science Foundation of China(61973196 and 62373225).
文摘With the aim of addressing the visual positioning problem of board-to-board(BTB)jacks during the automatic assembly of flexible printed circuit(FPC)in mobile phones,an FPC-BTB jack detection method based on the optimized You Only Look Once,version 5(YOLOv5)deep learning algorithm was proposed in this study.An FPC-BTB jack real-time detection and positioning system was developed for the real-time target detection and pose output synchronization of the BTB jack.On that basis,a visual positioning experimental platform that integrated a UR5e manipulator arm and Hikvision industrial camera was built for BTB jack detection and positioning experiments.As indicated by the experimental results,the developed FPC-BTB jack detection and positioning system for BTB target recognition and positioning achieved a success rate of 99.677%.Its average detection accuracy reached 99.341%,the average confidence of the detected target was 91%,the detection and positioning speed reached 31.25 frames per second,and the positioning deviation was less than 0.93 mm,which conforms to the practical application requirements of the FPC assembly process.
基金support by the China NSF projects(Nos.61505094,61377012 and 51522505).
文摘A small and weak target detection method is proposed in this work that outperforms all other methods in terms of real-time capability.It is the first time that two-dimensional(2D)images are processed using only one-dimensional1D structuring elements in a morphology-based approach,enabling the real-time hardware implementation of the whole image processing method.A parallel image readout and processing structure is introduced to achieve an ultra-low latency time on the order of nanoseconds,and a hyper-frame resolution in the time domain can be achieved by combining the row-by-row structure and the electrical rolling shutter technique.Experimental results suggest that the expected target can be successfully detected under various interferences with an accuracy of 0.1 pixels(1σ)under the worst sky night test condition and that a centroiding precision of better than 0.03 pixels(1σ)can be reached for static tests.The real-time detection method with high robustness and accuracy is attractive for application to all types of real-time small target detection systems,such as medical imaging,infrared surveillance,and target measurement and tracking,where an ultra-high processing speed is required.