期刊文献+
共找到1,533篇文章
< 1 2 77 >
每页显示 20 50 100
Analysis of the joint detection capability of the SMILE satellite and EISCAT-3D radar 被引量:2
1
作者 JiaoJiao Zhang TianRan Sun +7 位作者 XiZheng Yu DaLin Li Hang Li JiaQi Guo ZongHua Ding Tao Chen Jian Wu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期299-306,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite European Incoherent Scatter Sciences Association(EISCAT)-3D radar joint detection
下载PDF
Rail-Pillar Net:A 3D Detection Network for Railway Foreign Object Based on LiDAR
2
作者 Fan Li Shuyao Zhang +2 位作者 Jie Yang Zhicheng Feng Zhichao Chen 《Computers, Materials & Continua》 SCIE EI 2024年第9期3819-3833,共15页
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w... Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy. 展开更多
关键词 Railway foreign object light detection and ranging(LiDAR) 3D object detection PointPillars parallel attention mechanism transfer learning
下载PDF
Depth-Guided Vision Transformer With Normalizing Flows for Monocular 3D Object Detection
3
作者 Cong Pan Junran Peng Zhaoxiang Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期673-689,共17页
Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t... Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts. 展开更多
关键词 Monocular 3D object detection normalizing flows Swin Transformer
下载PDF
Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+Deep Learning Model
4
作者 Wanrun Li Wenhai Zhao +1 位作者 Tongtong Wang Yongfeng Du 《Structural Durability & Health Monitoring》 EI 2024年第5期553-575,共23页
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ... The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades. 展开更多
关键词 Structural health monitoring computer vision blade surface defects detection Deeplabv3+ deep learning model
下载PDF
Fe^(3+)对细粒菱锌矿和方解石分散行为的影响
5
作者 马子龙 潘文峰 +3 位作者 廖寅飞 曹亦俊 李树磊 陈小国 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第3期923-933,共11页
方解石矿泥的覆盖和高价金属阳离子的存在是影响粒径−20μm细粒菱锌矿浮选效果的关键因素,两者通过改变菱锌矿的表面性质而恶化其分散性和浮选环境。本文选择菱锌矿浮选中常见的Fe^(3+)为研究对象,通过吸附试验、Zeta电位、XPS分析,DLV... 方解石矿泥的覆盖和高价金属阳离子的存在是影响粒径−20μm细粒菱锌矿浮选效果的关键因素,两者通过改变菱锌矿的表面性质而恶化其分散性和浮选环境。本文选择菱锌矿浮选中常见的Fe^(3+)为研究对象,通过吸附试验、Zeta电位、XPS分析,DLVO理论计算等考察Fe^(3+)对菱锌矿和方解石的分散行为规律和作用机理。结果表明:两种矿物对Fe^(3+)的吸附行为基本一致,但Fe^(3+)对菱锌矿分散行为的影响程度大于Fe^(3+)对方解石分散行为的影响。当Fe^(3+)浓度为5×10^(−4)mol/L时,菱锌矿分散行为被完全破坏。溶液化学及DLVO理论计算结果表明,Fe^(3+)吸附在矿物表面形成了羟基络合物或Fe(OH)3,导致菱锌矿颗粒间作用力小于方解石的,这是Fe^(3+)破坏菱锌矿分散行为、影响粒径−20μm细粒菱锌矿浮选的主要原因。 展开更多
关键词 Fe^(3+) 细粒 菱锌矿 方解石 分散行为
下载PDF
一例Eu-MOF材料的构筑及对Fe^(3+)与硝基芳香族爆炸物的荧光检测性能
6
作者 冀超 李文 +2 位作者 张丽荣 华佳 刘云凌 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2024年第2期16-24,共9页
金属阳离子和硝基芳香族爆炸物的大量排放对环境和人体健康造成了严重威胁,对它们的高效检测具有重要的研究意义和挑战性,金属-有机骨架(MOFs)是一类新型的荧光传感检测材料.本文采用溶剂热法合成了一例具有fcu拓扑结构的Eu-MOF材料,[(C... 金属阳离子和硝基芳香族爆炸物的大量排放对环境和人体健康造成了严重威胁,对它们的高效检测具有重要的研究意义和挑战性,金属-有机骨架(MOFs)是一类新型的荧光传感检测材料.本文采用溶剂热法合成了一例具有fcu拓扑结构的Eu-MOF材料,[(CH_(3))_(2)NH_(2)]_(2)[Eu_(6)(μ_(3)-OH)_(8)(EDDC)_(6)]·8DMA·3MeOH·6H_(2)O[JLUMOF128,H_(2)EDDC=(E)-4,4′-(乙烯-1,2-取代基)二苯甲酸],并通过单晶X射线衍射、粉末X射线衍射、X射线光电子能谱、红外光谱、元素分析和热重分析对其结构及组成进行了表征.结果表明,由于荧光配体H_(2)EDDC的引入,JLU-MOF128表现出显著的荧光性能,在DMF溶液中对Fe^(3+)、2,4,6-三硝基苯酚(TNP)和2,4-二硝基苯酚(2,4-DNP)具有较好的检测效果,Ksv值分别为2.09×10^(4),8.49×10^(4)和5.75×10^(4)L/mol,检测限分别为5.99,1.51和1.93μmol/L.在金属阳离子和硝基芳香族爆炸物的检测方面,JLU-MOF128是一种理想的多感应荧光传感材料. 展开更多
关键词 铕-金属-有机骨架 荧光检测 Fe^(3+)离子 硝基芳香族爆炸物
下载PDF
含酚类煤化工废水自还原Fe^(3+)类芬顿体系研究
7
作者 丛伯一 刘杨 +4 位作者 殷浩翔 张恒 周鹏 李伟 赖波 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第4期57-65,共9页
煤化工废水水质复杂,难降解有机物及氨氮含量高,给废水处理带来较大难度。现有的煤化工废水处理技术(混凝法、吸附法、膜生物反应法等)具有成本高、运行不稳定、预处理效果差等缺陷,难以满足煤化工行业发展的需要。为了高效处理煤化工废... 煤化工废水水质复杂,难降解有机物及氨氮含量高,给废水处理带来较大难度。现有的煤化工废水处理技术(混凝法、吸附法、膜生物反应法等)具有成本高、运行不稳定、预处理效果差等缺陷,难以满足煤化工行业发展的需要。为了高效处理煤化工废水,本文利用煤化工废水中酚类有机物的还原性促进Fe^(3+)/Fe^(2+)的循环,提出了一种利用Fe^(3+)/H_(2)O_(2)类芬顿体系处理煤化工废水的方法。实验结果表明:Fe^(3+)/H_(2)O_(2)体系中COD、TOC、TN、NH3-N的去除率可以达到74.63%、52.62%、10.46%、15.11%;相比于其他体系,Fe^(3+)/H_(2)O_(2)体系出水色度明显降低,UV-Vis光谱下降幅度最大,铁泥量也明显减少。Q-TOF分析结果表明:废水中主要的8种有机物为酚类或具有醛基、羰基、羧基、碳碳双键或者酯基等还原性的官能团。通过测定COD去除率和pH、Fe^(3+)/Fe^(2+)、H_(2)O_(2)等含量随时间的变化趋势,提出了Fe^(3+)/H_(2)O_(2)体系去除有机物的机理:废水中的还原性有机物将Fe^(3+)还原为Fe^(2+),促进Fe^(3+)/Fe^(2+)循环,生成的Fe^(2+)与H_(2)O_(2)发生芬顿反应,实现废水中有机污染物的去除。利用控制变量法,确定了最佳运行工况为:Fe_(2)(SO_(4))_(3)添加量为1.0 g/L、H_(2)O_(2)添加量为50 mmol/L、反应温度为30℃、初始pH为6.8。在此工况下,反应60 min后,煤化工废水的COD、TOC、TN、NH_(3)-N去除效果良好,色度明显降低,BOD_(5)和COD的比值(B/C)从0.17提升至0.47,可生化性大幅提高。本文证实了利用含酚类煤化工废水自还原Fe^(3+)/H_(2)O_(2)体系的可行性,降低了运行成本,可为后续研究及工程应用提供理论基础。 展开更多
关键词 Fe^(3+) H_(2)O_(2) 类芬顿 煤化工废水 酚类化合物
下载PDF
Fe^(3+)对浮钨尾矿中受抑萤石的活化作用及其与方解石浮选分离的影响
8
作者 宁江峰 曾建红 +3 位作者 徐寒冰 耿亮 崔瑞 杨哲辉 《矿产保护与利用》 2024年第2期74-79,共6页
白钨矿、萤石和方解石的浮选中,抑制剂的加入往往会增加后续萤石、方解石浮选分离的难度。通过浮选实验、吸附量测试、Zeta电位测量及溶液化学计算,研究了Fe^(3+)对浮钨尾矿中受抑萤石的活化作用及其与方解石浮选分离的影响及机理。单... 白钨矿、萤石和方解石的浮选中,抑制剂的加入往往会增加后续萤石、方解石浮选分离的难度。通过浮选实验、吸附量测试、Zeta电位测量及溶液化学计算,研究了Fe^(3+)对浮钨尾矿中受抑萤石的活化作用及其与方解石浮选分离的影响及机理。单矿物浮选实验结果表明,Fe^(3+)单独添加对方解石的抑制作用远大于萤石。水玻璃单独添加时,两种矿物同时被抑制。在pH为8.0、水玻璃用量为300 mg/L、油酸钠用量为1.5×10^(-4)mol/L的条件下,萤石、方解石浮选回收率分别为13.49%和16.83%。水玻璃体系中引入Fe^(3+),在pH为8.0、水玻璃用量为75 mg/L、Fe^(3+)用量为3×10^(-4)mol/L、油酸钠用量为1.5×10^(-4)mol/L的条件下,萤石、方解石浮选回收率分别为82.01%和15.64%,Fe^(3+)的加入提高了水玻璃体系中受抑萤石的可浮性,选择性活化了萤石,机理分析表明,Fe^(3+)更容易在方解石表面发生吸附,阻碍了油酸钠的吸附。水玻璃体系中加入Fe^(3+)后,溶液中Fe^(3+)的水解组分Fe(OH)^(2+)、Fe(OH)_(4)^(-)选择性地与萤石表面水玻璃的水解组分Si(OH)_(4)、SiO(OH)_(3)^(-)发生化学反应,生成Fe^(+)-水玻璃聚合物,使得萤石表面的水玻璃水解组分含量减少,恢复了萤石的可浮性,而Fe^(+)-水玻璃聚合物则较多地在方解石表面发生吸附,更加抑制了方解石的浮选。 展开更多
关键词 萤石 方解石 Fe^(3+) 活化作用 浮选
下载PDF
绿萝制备蓝色荧光碳量子点及对Fe^(3+)的检测
9
作者 吴聪影 薛佳佳 +1 位作者 刘玉慧 吴琪琳 《化工新型材料》 CAS CSCD 北大核心 2024年第2期206-211,217,共7页
以绿萝为原料,通过水热法合成了蓝色荧光碳量子点(CQDs),考察了原料质量浓度、水热温度、CQDs浓度对CQDs荧光强度的影响,确定了最佳工艺条件:原料质量浓度3.3g/L、反应温度260℃、反应时间4h,此条件下制备的CQDs荧光强度最高。同时研究... 以绿萝为原料,通过水热法合成了蓝色荧光碳量子点(CQDs),考察了原料质量浓度、水热温度、CQDs浓度对CQDs荧光强度的影响,确定了最佳工艺条件:原料质量浓度3.3g/L、反应温度260℃、反应时间4h,此条件下制备的CQDs荧光强度最高。同时研究了盐离子浓度、紫外灯光照射时间、溶液pH对CQDs荧光强度的影响,结果表明CQDs有较好的盐稳定性和光稳定性,对pH有一定的依赖性,酸性条件下CQDs荧光强度相对较高。傅里叶变换红外光谱、X射线光电子能谱分析表明CQDs表面含有羟基、羧基等官能团,在水中有良好的溶解性。Fe^(3+)对CQDs的荧光有明显的猝灭作用,其他金属离子对其干扰性小,基于荧光强度与Fe^(3+)浓度之间的线性关系,CQDs能快速地检测水溶液中Fe^(3+)浓度,最低检测限为0.77μmol/L。 展开更多
关键词 绿萝 水热法 荧光碳量子点 Fe^(3+) 荧光猝灭
下载PDF
基于Fe^(3+)-DA-APS自催化体系的Fe_(3)O_(4)/PAA水凝胶的制备及性能研究
10
作者 温暖 何新宇 +2 位作者 黄欣薏 何帅 左芳 《广东化工》 CAS 2024年第4期5-8,共4页
以Fe_(3)O_(4)纳米粒子为磁性组分,基于AA(丙烯酸)与部分Fe3O4反应产生的Fe3+、多巴胺(DA)构建双重自催化过硫酸铵(APS)的自由基聚合体系,在低温下制备了Fe_(3)O_(4)/聚丙烯酸(PAA)水凝胶,并对其进行表征。研究结果表明:Fe_(3)O_(4)/PA... 以Fe_(3)O_(4)纳米粒子为磁性组分,基于AA(丙烯酸)与部分Fe3O4反应产生的Fe3+、多巴胺(DA)构建双重自催化过硫酸铵(APS)的自由基聚合体系,在低温下制备了Fe_(3)O_(4)/聚丙烯酸(PAA)水凝胶,并对其进行表征。研究结果表明:Fe_(3)O_(4)/PAA水凝胶具有良好的力学性能,断裂伸长率、拉伸强度分别为900%、251.1 kPa;同时,其可较好粘附不同基材,在钢材上粘附-剥离循环20次后粘附强度仍稳定在30.7 kPa左右;此外,其还可感应极小形变,并在166 ms内快速响应。该Fe_(3)O_(4)/PAA水凝胶综合性能良好,具备应用于柔性传感器等领域的潜力。 展开更多
关键词 Fe^(3+)-DA-APS 自催化 自由基聚合 水凝胶 柔性传感器
下载PDF
LiLu(MoO_(4))_(2):Eu^(3+)的制备及其对Fe^(3+)离子的荧光检测研究
11
作者 杨杰 蒋玥 +1 位作者 杨骏 胡珊珊 《聊城大学学报(自然科学版)》 2024年第4期64-69,88,共7页
Fe^(3+)在生命过程中扮演着重要的角色,开发一种能够快速定量检测Fe^(3+)离子的荧光探针有着重要意义。采用溶胶-凝胶法成功制备了四方相白钨矿结构的LiLu(MoO_(4))_(2):Eu^(3+)荧光粉,粒径为1~2μm;通过荧光光谱研究了所得荧光粉的光... Fe^(3+)在生命过程中扮演着重要的角色,开发一种能够快速定量检测Fe^(3+)离子的荧光探针有着重要意义。采用溶胶-凝胶法成功制备了四方相白钨矿结构的LiLu(MoO_(4))_(2):Eu^(3+)荧光粉,粒径为1~2μm;通过荧光光谱研究了所得荧光粉的光学性质,确定了Eu^(3+)的最佳发光掺杂摩尔浓度为15%。所得LiLu(MoO_(4))_(2):15%Eu^(3+)对Fe^(3+)离子的检测下限为14.4μmol/L,并且具有高选择性和抗干扰性。 展开更多
关键词 双钼酸盐 稀土离子 荧光探针 检测Fe^(3+)
下载PDF
A highly sensitive ratiometric near-infrared nanosensor based on erbium-hyperdoped silicon quantum dots for iron(Ⅲ) detection
12
作者 Kun Wang Wenxuan Lai +2 位作者 Zhenyi Ni Deren Yang Xiaodong Pi 《Journal of Semiconductors》 EI CAS CSCD 2024年第8期49-58,共10页
Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection... Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions. 展开更多
关键词 erbium-hyperdoped silicon quantum dots dual-emission near-infrared nanosensor Fe^(3+)detection sequential logic circuit
下载PDF
NPCl-CDs/Fe^(3+)荧光探针的制备及对L-Cys的传感检测
13
作者 徐小花 王莉 +4 位作者 林鹏程 马天锋 石琳 王欢 芦永昌 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2024年第9期36-45,共10页
以葡萄糖、乙二胺、浓盐酸和浓磷酸作为反应前体,采用一步水热法合成了一种蓝绿色的荧光碳点NPCl-CDs,并以此构建了NPCl-CDs/Fe^(3+)荧光探针用于实际样品中L-半胱氨酸(L-Cys)的定量检测.实验结果表明,在NPCl-CDs中加入Fe^(3+)可使NPCl-... 以葡萄糖、乙二胺、浓盐酸和浓磷酸作为反应前体,采用一步水热法合成了一种蓝绿色的荧光碳点NPCl-CDs,并以此构建了NPCl-CDs/Fe^(3+)荧光探针用于实际样品中L-半胱氨酸(L-Cys)的定量检测.实验结果表明,在NPCl-CDs中加入Fe^(3+)可使NPCl-CDs的荧光猝灭,当向NPCl-CDs/Fe^(3+)猝灭体系中引入L-Cys时,体系的荧光强度得以恢复.由此构建了一种用于L-Cys定量检测的新型“开-关-开”NPCl-CDs/Fe^(3+)-L-Cys荧光传感系统.该方法在5.8~60.0μmol/L浓度范围内呈现较宽的线性区域,检出限为0.052μmol/L.该荧光传感系统对L-Cys表现出良好的选择性,对实际样品中L-Cys的检测具有潜在的应用价值. 展开更多
关键词 NPCl-CDs Fe^(3+) L-半胱氨酸 荧光传感
下载PDF
Heterogeneous Cu_(x)O Nano‑Skeletons from Waste Electronics for Enhanced Glucose Detection
14
作者 Yexin Pan Ruohan Yu +8 位作者 Yalong Jiang Haosong Zhong Qiaoyaxiao Yuan Connie Kong Wai Lee Rongliang Yang Siyu Chen Yi Chen Wing Yan Poon Mitch Guijun Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期554-568,共15页
Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabrica... Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste.We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous Cu_(x)O(h-Cu_(x)O)nano-skeletons electrode for glucose sensing,offering rapid(<1 min),clean,air-compatible,and continuous fabrication,applicable to a wide range of Cu-containing substrates.Leveraging this approach,h-Cu_(x)O nanoskeletons,with an inner core predominantly composed of Cu_(2)O with lower oxygen content,juxtaposed with an outer layer rich in amorphous Cu_(x)O(a-Cu_(x)O)with higher oxygen content,are derived from discarded printed circuit boards.When employed in glucose detection,the h-Cu_(x)O nano-skeletons undergo a structural evolution process,transitioning into rigid Cu_(2)O@CuO nano-skeletons prompted by electrochemical activation.This transformation yields exceptional glucose-sensing performance(sensitivity:9.893 mA mM^(-1) cm^(-2);detection limit:0.34μM),outperforming most previously reported glucose sensors.Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption.This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives. 展开更多
关键词 Copper oxide Electron 3D tomography E-WASTE Glucose detection Electrochemical activation
下载PDF
不同因素对Fe^(3+)-TiO_(2)/ACF降解NH_(3)的影响
15
作者 徐伟 万家豪 +1 位作者 张兴惠 贾冠冠 《化工新型材料》 CAS CSCD 北大核心 2024年第7期194-198,203,共6页
为了探究不同因素对Fe^(3+)-TiO_(2)/活性炭纤维(ACF)降解氨气(NH_(3))的影响规律,采用Fe^(3+)-TiO_(2)/ACF复合材料,以NH_(3)为目标降解物,研究初始浓度、流速、光催化剂负载量以及光照强度对Fe^(3+)-TiO_(2)/ACF降解NH_(3)的影响,并... 为了探究不同因素对Fe^(3+)-TiO_(2)/活性炭纤维(ACF)降解氨气(NH_(3))的影响规律,采用Fe^(3+)-TiO_(2)/ACF复合材料,以NH_(3)为目标降解物,研究初始浓度、流速、光催化剂负载量以及光照强度对Fe^(3+)-TiO_(2)/ACF降解NH_(3)的影响,并进行了相应的反应动力学分析。结果表明:随着初始浓度的增加,NH_(3)降解率呈现略微降低的趋势,光催化过程基本符合L-H一级反应动力学模型;随着流速的增加,NH_(3)降解率表现为先升高后降低,其光催化过程也基本符合L-H一级反应动力学模型;随着光催化剂负载量以及光照强度的增加,NH_(3)降解率表现为略微增加的趋势。 展开更多
关键词 Fe^(3+)-TiO_(2)/活性炭纤维 降解 不同因素 影响规律 NH_(3)
下载PDF
B位Fe^(3+)掺杂Na_(0.5)Bi_(0.49)TiO_(3)陶瓷的电导性能
16
作者 杨斌 李博锐 +3 位作者 程婉婉 高玄玄 来龙飞 谢宁 《材料工程》 EI CAS CSCD 北大核心 2024年第5期195-202,共8页
采用固相合成法制备了x=0,0.02,0.04和0.06的Na_(0.5)Bi_(0.49)Ti_(1-x)Fe_(x)O_(3-δ)(NBT)粉末材料,经压制成型并在1000~1150℃烧结制备了片状陶瓷样品。通过XRD,SEM和EIS测试研究了Fe^(3+)掺杂量x对NBT陶瓷性能的影响。结果表明,NBT... 采用固相合成法制备了x=0,0.02,0.04和0.06的Na_(0.5)Bi_(0.49)Ti_(1-x)Fe_(x)O_(3-δ)(NBT)粉末材料,经压制成型并在1000~1150℃烧结制备了片状陶瓷样品。通过XRD,SEM和EIS测试研究了Fe^(3+)掺杂量x对NBT陶瓷性能的影响。结果表明,NBT材料在掺杂Fe^(3+)后出现了新相NaBiTi_(6)O_(14),且含量随x的增加而变多。材料在掺杂后的烧结温度降低了100~150℃,同时材料的晶粒变得细小。在300~700℃测试温度范围内,x=0.02,0.04和0.06的样品的电导率在相同温度下都处于同一数量级,相对于x=0的样品的电导率提升了约1000倍。x=0.04的样品具有最高的电导率,在600℃和700℃的测试温度下,电导率分别达到9.8 mS/cm和17.0 mS/cm。 展开更多
关键词 Na_(0.5)Bi_(0.49)TiO_(3) Fe^(3+)掺杂 电导率 氧离子导体
下载PDF
Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI
17
作者 Saad Akbar Humera Azam +3 位作者 Sulaiman Sulmi Almutairi Omar Alqahtani Habib Shah Aliya Aleryani 《Computers, Materials & Continua》 SCIE EI 2024年第7期1075-1104,共30页
The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools.In this article,a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplo... The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools.In this article,a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19,pneumonia,and normal conditions in chest X-ray images(CXIs)is proposed coupled with Explainable Artificial Intelligence(XAI).Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3,VGG16,and VGG19 that excel in the task of feature extraction.The methodology is further enhanced by the inclusion of the t-SNE(t-Distributed Stochastic Neighbor Embedding)technique for visualizing the extracted image features and Contrast Limited Adaptive Histogram Equalization(CLAHE)to improve images before extraction of features.Additionally,an AttentionMechanism is utilized,which helps clarify how the modelmakes decisions,which builds trust in artificial intelligence(AI)systems.To evaluate the effectiveness of the proposed approach,both benchmark datasets and a private dataset obtained with permissions from Jinnah PostgraduateMedical Center(JPMC)in Karachi,Pakistan,are utilized.In 12 experiments,VGG19 showcased remarkable performance in the hybrid dataset approach,achieving 100%accuracy in COVID-19 vs.pneumonia classification and 97%in distinguishing normal cases.Overall,across all classes,the approach achieved 98%accuracy,demonstrating its efficiency in detecting COVID-19 and differentiating it fromother chest disorders(Pneumonia and healthy)while also providing insights into the decision-making process of the models. 展开更多
关键词 COVID-19 detection deep neural networks support vector machine CXIs InceptionV3 VGG16 VGG19 t-SNE embedding CLAHE attention mechanism XAI
下载PDF
Correg-Yolov3:a Method for Dense Buildings Detection in High-resolution Remote Sensing Images 被引量:2
18
作者 Zhanlong CHEN Shuangjiang LI +3 位作者 Yongyang XU Daozhu XU Chao MA Junli ZHAO 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第2期51-61,共11页
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti... The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images. 展开更多
关键词 high resolution remote sensing image Correg-YOLOv3 corner regression dense buildings object detection
下载PDF
锌金属有机骨架材料在食品Fe^(3+)检测中的应用
19
作者 陈源 刘蕊 +4 位作者 陈紫薇 周雨静 吴亚妮 曲佳然 邹丽飞 《科技创新与应用》 2024年第27期86-89,共4页
以2,2',5,5'-偶氮苯四羧酸(ABTC)、1,2,4-三氮唑(Tz)和硝酸锌为原料合成的一种锌金属有机骨架材料([(CH_(3))_(2)NH_(2)][Zn_(2)(ABTC)(Tz)]·3DMF)作为研究对象,用荧光光谱法对该材料的荧光特性进行探究。测试结果显示,相... 以2,2',5,5'-偶氮苯四羧酸(ABTC)、1,2,4-三氮唑(Tz)和硝酸锌为原料合成的一种锌金属有机骨架材料([(CH_(3))_(2)NH_(2)][Zn_(2)(ABTC)(Tz)]·3DMF)作为研究对象,用荧光光谱法对该材料的荧光特性进行探究。测试结果显示,相较于其他离子而言,Fe^(3+)离子的样品溶液发光强度猝灭效果最为明显,并且Zn-MOF材料对Fe^(3+)离子有良好的猝灭效果和选择性。利用Zn-MOF材料的这一特性,在实验中以Zn-MOF材料作为荧光探针来测定食品(紫菜、猪肝粉、奶粉、核桃和牛肉)中Fe^(3+)的含量。 展开更多
关键词 锌金属有机骨架材料 荧光光谱法 Fe^(3+) 荧光猝灭 荧光特性
下载PDF
A Lightweight Driver Drowsiness Detection System Using 3DCNN With LSTM 被引量:1
20
作者 Sara A.Alameen Areej M.Alhothali 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期895-912,共18页
Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepin... Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepiness often have associated indicators that researchers can use to identify and promptly warn drowsy drivers to avoid potential accidents.This paper proposes a spatiotemporal model for monitoring drowsiness visual indicators from videos.This model depends on integrating a 3D convolutional neural network(3D-CNN)and long short-term memory(LSTM).The 3DCNN-LSTM can analyze long sequences by applying the 3D-CNN to extract spatiotemporal features within adjacent frames.The learned features are then used as the input of the LSTM component for modeling high-level temporal features.In addition,we investigate how the training of the proposed model can be affected by changing the position of the batch normalization(BN)layers in the 3D-CNN units.The BN layer is examined in two different placement settings:before the non-linear activation function and after the non-linear activation function.The study was conducted on two publicly available drowsy drivers datasets named 3MDAD and YawDD.3MDAD is mainly composed of two synchronized datasets recorded from the frontal and side views of the drivers.We show that the position of the BN layers increases the convergence speed and reduces overfitting on one dataset but not the other.As a result,the model achieves a test detection accuracy of 96%,93%,and 90%on YawDD,Side-3MDAD,and Front-3MDAD,respectively. 展开更多
关键词 3D-CNN deep learning driver drowsiness detection LSTM spatiotemporal features
下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部