期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improved High Speed Flame Detection Method Based on YOLOv7 被引量:6
1
作者 Hongwen Du Wenzhong Zhu +1 位作者 Ke Peng Weifu Li 《Open Journal of Applied Sciences》 CAS 2022年第12期2004-2018,共15页
In order to solve the problems of the traditional flame detection method, such as low detection accuracy, slow detection speed and lack of real-time detection ability. An improved high speed flame detection method bas... In order to solve the problems of the traditional flame detection method, such as low detection accuracy, slow detection speed and lack of real-time detection ability. An improved high speed flame detection method based on YOLOv7 is proposed. Based on YOLOv7 and combined with ConvNeXtBlock, CN-B network module was constructed, and YOLOv7-CN-B flame detection method was proposed. Compared with the YOLOv7 method, this flame detection method is lighter and has stronger flame feature extraction ability. 2059 open flame data sets labeled with single flame categories were used to avoid the enhancement effect brought by high-quality data sets, so that the comparative experimental effect completely depended on the performance of the flame detection method itself. The results show that the accuracy of YOLOv7-CN-B method is improved by 5% and mAP is improved by 2.1% compared with YOLOv7 method. The detection speed reached 149.25 FPS, and the single detection speed reached 11.9 ms. The experimental results show that the YOLOv7-CN-B method has better performance than the mainstream algorithm. 展开更多
关键词 Light Weight detection of flame YOLOv7-CN-B YOLOv7 ConvNeXt
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部