We present a high-speed visible light communication (VLC) link that uses a commercially available phos- phorescent white light-emitting diode (LED). Such devices have few megahertz bandwidth due to the slow respon...We present a high-speed visible light communication (VLC) link that uses a commercially available phos- phorescent white light-emitting diode (LED). Such devices have few megahertz bandwidth due to the slow response of phosphorescent component, which severely limit the transmission data rate of VLC system. We propose a simple pre-emphasis circuit. With blue-filtering and the pre-emphasis circuit, the bandwidth of VLC system can be enhanced from 3 to 77.6 MHz, which allows non-return-to-zero on-off-keying (NRZ- OOK) data transmission up to 200 Mb/s with the bit error ratio of 5.3 × 10-7 which is below 10-6. The VLC link operates at the room illumination level of -1000 lx at 1.1 m range using a single 1 W white LED.展开更多
We experimentally demonstrate a high-speed phosphorescent white light emitting diode (LED) visible light communication (VLC) system without utilizing an optical blue filter. Here, the white light response is equal...We experimentally demonstrate a high-speed phosphorescent white light emitting diode (LED) visible light communication (VLC) system without utilizing an optical blue filter. Here, the white light response is equalized by using the proposed analog equalizers. The 3 dB bandwidth of the VLC link could be extended from 3 to 132 MHz, which allows 330 Mbit/s non-return-to-zero on-off keying (NRZ-OOK) data transmission with a bit error ratio (BER) of 7,2 × 10^-10 and 672 Mbit/s 64-quadrature amplitude modulation (64-QAM) data transmission with a BER of 3.2 × 10^-3. These resultant BERs are less than the forward error correction (FEC) limit of 3.8× 10^-3. The VLC link distance is 1 m using a single 1 W LED. The transmitter and receiver modules are integrated to a compact size. Furthermore, the relationships between the signal performance and illumination level or optical power are investigated and analyzed.展开更多
We propose and experimentally demonstrate a novel scheme to realize electrical/optical (E/O) conversion on the receiver side of a wireless fiber integration system at the W band. At the receiver, a directly modulate...We propose and experimentally demonstrate a novel scheme to realize electrical/optical (E/O) conversion on the receiver side of a wireless fiber integration system at the W band. At the receiver, a directly modulated laser (DML) is used to realize E/O conversion. The received 85 GHz wireless millimeter-wave (mm-wave) signal is first down-converted into a 10 GHz electrical intermediate-frequency (IF) signal to overcome the insufficient band- width of the subsequent DML. Then, two cascaded electrical amplifiers (EAs) are employed to boost the elec- trical IF signal before it is used to drive a DML. By using this scheme, we transmit a 10 Gb/s 16 quadrature amplitude modulation (16QAM) signal over a 10 m wireless link, and then deliver it over a 2 km single-mode fiber-28 (SMF-28) wire link with a bit error ratio (BER) that is less than the hard-decision forward error correction threshold of 3.8× 10^-3. Our experimental results show that the DML is good device to be used for the E/O conversion of a 16OAM signal.展开更多
基金supported by the National "973" Program of China(Nos.2013CB329205 and 2011CBA00608)the National "863" Program of China(Nos.2013AA013602,2013AA013603,2013AA03A104,and 2013AA031903)the National Natural Science Foundation of China(Nos.61036002 and 61178051)
文摘We present a high-speed visible light communication (VLC) link that uses a commercially available phos- phorescent white light-emitting diode (LED). Such devices have few megahertz bandwidth due to the slow response of phosphorescent component, which severely limit the transmission data rate of VLC system. We propose a simple pre-emphasis circuit. With blue-filtering and the pre-emphasis circuit, the bandwidth of VLC system can be enhanced from 3 to 77.6 MHz, which allows non-return-to-zero on-off-keying (NRZ- OOK) data transmission up to 200 Mb/s with the bit error ratio of 5.3 × 10-7 which is below 10-6. The VLC link operates at the room illumination level of -1000 lx at 1.1 m range using a single 1 W white LED.
基金supported by the National 973Program of China(No.2013CB329205)the National 863Program of China(Nos.2013AA013602,2013AA013603,2013AA03A104,and 2013AA031903)+1 种基金the National Natural Science Foundation of China(Nos.61036002 and61178051)the Beijing Municipal Science and Technology Project(No.Z141100001414004)
文摘We experimentally demonstrate a high-speed phosphorescent white light emitting diode (LED) visible light communication (VLC) system without utilizing an optical blue filter. Here, the white light response is equalized by using the proposed analog equalizers. The 3 dB bandwidth of the VLC link could be extended from 3 to 132 MHz, which allows 330 Mbit/s non-return-to-zero on-off keying (NRZ-OOK) data transmission with a bit error ratio (BER) of 7,2 × 10^-10 and 672 Mbit/s 64-quadrature amplitude modulation (64-QAM) data transmission with a BER of 3.2 × 10^-3. These resultant BERs are less than the forward error correction (FEC) limit of 3.8× 10^-3. The VLC link distance is 1 m using a single 1 W LED. The transmitter and receiver modules are integrated to a compact size. Furthermore, the relationships between the signal performance and illumination level or optical power are investigated and analyzed.
基金partially supported by the National Natural Science Foundation of China under Grant Nos.61377079 and 61372035
文摘We propose and experimentally demonstrate a novel scheme to realize electrical/optical (E/O) conversion on the receiver side of a wireless fiber integration system at the W band. At the receiver, a directly modulated laser (DML) is used to realize E/O conversion. The received 85 GHz wireless millimeter-wave (mm-wave) signal is first down-converted into a 10 GHz electrical intermediate-frequency (IF) signal to overcome the insufficient band- width of the subsequent DML. Then, two cascaded electrical amplifiers (EAs) are employed to boost the elec- trical IF signal before it is used to drive a DML. By using this scheme, we transmit a 10 Gb/s 16 quadrature amplitude modulation (16QAM) signal over a 10 m wireless link, and then deliver it over a 2 km single-mode fiber-28 (SMF-28) wire link with a bit error ratio (BER) that is less than the hard-decision forward error correction threshold of 3.8× 10^-3. Our experimental results show that the DML is good device to be used for the E/O conversion of a 16OAM signal.