The low molecular weight polyacrylate sodium (PAA Na) detergent builder was synthesized with K 2S 2O 8 as initiator in a neutral aqueous medium. The influences of reaction conditions on the viscosity average molec...The low molecular weight polyacrylate sodium (PAA Na) detergent builder was synthesized with K 2S 2O 8 as initiator in a neutral aqueous medium. The influences of reaction conditions on the viscosity average molecular weight were studied. The critical value of synthetic PAA Na inhibiting the precipitation of CaCO 3 was determined and compared with that of other common builders. It is confirmed from SEM graphs that PAA Na can make CaCO 3 crystal defective. Washing tests show synthetic PAA Na can partially replace sodium tripolyphosphate (STPP) and is a potential polymeric detergent builder in low phosphate powder detergents.展开更多
Surfactants and builders are the two most important ingredients in laundry, household and personal-care cleaning products. They play a key role in washing processes. The development of various surfactants (e.g., anio...Surfactants and builders are the two most important ingredients in laundry, household and personal-care cleaning products. They play a key role in washing processes. The development of various surfactants (e.g., anionic, nonionic, cationic, zwitterionic, and silicone surfactants) and builders (inorganic, organic and polymeric builders)used in the detergent compositions are reviewed and their detergency performance and biodegradability are discussed. In the future, the development of the surfactants and builders used in detergent compositions should be based on economic and environmental considerations. The use of the eco-friendly surfactants and builders derived from inexpensive renewable resources (e.g., alkyl polyglucosides and bio-based polyesters) in detergent compositions is the developing trends in detergent industry.展开更多
We evaluated the effects of neutral detergent soluble fiber (NDSF) and sucrose supplementation on ruminal fermentation, microbial synthesis, and populations of ruminal cellulolytic bacteria using the rumen simulatio...We evaluated the effects of neutral detergent soluble fiber (NDSF) and sucrose supplementation on ruminal fermentation, microbial synthesis, and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). The experiment had a 2x2 factorial design with two dosages of sucrose, low (ca. 0.26 g d-1, low-sucrose) and high (ca. 1.01 g d-1, high-sucrose), and two dosages of supplied NDSF, low (1.95 g d-1, Iow-NDSF) and high (2.70 g d-1, high-NDSF). Interactions between NDSF and sucrose were detected for xylanase activity from solid fraction and apparent disappearance of neutral detergent fiber (NDF) and hemicellulose, with the lowest values observed for high-NDSF and high-sucrose treatment. Supplemental NDSF appeared to increase the molar proportion of acetate and reduce that of butyrate; however, the effects of supplemental sucrose on VFA profiles depended upon NDSF amount. There was a NDSFxsucrose interaction for the production of methane. High-NDSF fermenters had lower ammonia-N production, greater daily N flow of solid- associated microbial pellets and total microorganisms, and greater microbial synthesis efficiency compared with low- NDSF fermenters. Supplementation with NDSF resulted in an increase in 16S rDNA copies of Ruminococcusflavefaciens and a reduction in copies of Ruminococcus albus. Supplementation with sucrose tended to increase the 16S rDNA copies ofR. albus from liquid fraction, but did not affect daily total microbial N flow and cellulolytic bacterium populations from solid fraction. These data indicate that the effects of the interaction between NDSF and sugars on ruminal fermentation and fiber digestion should be taken into account in diet formulation. Ruminal fermentation and metabolism of sugars warrant further investigation.展开更多
This paper reports the purification and characterization of kinetic parameters of cellulase produced from Trichoderma viride under still culture solid state fermentation technique using cheap and an easily available a...This paper reports the purification and characterization of kinetic parameters of cellulase produced from Trichoderma viride under still culture solid state fermentation technique using cheap and an easily available agricultural waste material, wheat straw as growth supported substrate. Trichoderma viride was cultured in fermentation medium of wheat straw under some previously optimized growth conditions and maximum activity of 398±2.43U/mL obtained after stipulated fermentation time period. Cellulase was purified 2.33 fold with specific activity of 105U/mg in comparison to crude enzyme extract using ammonium sulfate precipitation, dialysis and Sephadex-G-100 column chromatography. The enzyme was shown to have a relative low molecular weight of 58kDa by sodium dodecyl sulphate poly-acrylamide gel electrophoresis. The purified enzyme displayed 6.5 and 55oC as an optimum pH and temperature respectively. Using carboxymethyl cellulose as substrate, the enzyme showed maximum activity (Vmax) of 148U/mL with its corresponding KM value of 68μM. Among activators/inhibitors SDS, EDTA, and Hg2+ showed inhibitory effect on purified cellulase whereas, the enzyme activated by Co2+ and Mn2+ at a concentration of 1mM. The purified cellulase was compatible with four local detergent brands with up to 20 days of shelf life at room temperature suggesting its potential as a detergent additive for improved washing therefore, it is concluded that it may be potentially useful for industrial purposes especially for detergent and laundry industry.展开更多
This paper mainly covers a method for preparing a highly alkaline magnesium linoleate solution with a total base number(TBN) value of 328 mg KOH/g using linoleic acid as the biodegradable raw material, which can subst...This paper mainly covers a method for preparing a highly alkaline magnesium linoleate solution with a total base number(TBN) value of 328 mg KOH/g using linoleic acid as the biodegradable raw material, which can substitute for traditional lubricant detergents as an environmentally friendly detergent. Reaction conditions, including the molar ratio of magnesium oxide to linoleic acid, the molar ratio of methanol to magnesium oxide, the carbonation temperature, the molar ratio of water to magnesium oxide, the flow rate of CO2 gas and the duration for injection of CO2 to magnesium oxide system, were optimized.展开更多
文摘The low molecular weight polyacrylate sodium (PAA Na) detergent builder was synthesized with K 2S 2O 8 as initiator in a neutral aqueous medium. The influences of reaction conditions on the viscosity average molecular weight were studied. The critical value of synthetic PAA Na inhibiting the precipitation of CaCO 3 was determined and compared with that of other common builders. It is confirmed from SEM graphs that PAA Na can make CaCO 3 crystal defective. Washing tests show synthetic PAA Na can partially replace sodium tripolyphosphate (STPP) and is a potential polymeric detergent builder in low phosphate powder detergents.
文摘Surfactants and builders are the two most important ingredients in laundry, household and personal-care cleaning products. They play a key role in washing processes. The development of various surfactants (e.g., anionic, nonionic, cationic, zwitterionic, and silicone surfactants) and builders (inorganic, organic and polymeric builders)used in the detergent compositions are reviewed and their detergency performance and biodegradability are discussed. In the future, the development of the surfactants and builders used in detergent compositions should be based on economic and environmental considerations. The use of the eco-friendly surfactants and builders derived from inexpensive renewable resources (e.g., alkyl polyglucosides and bio-based polyesters) in detergent compositions is the developing trends in detergent industry.
基金supported by the National Key Technologies R&D Program of China(2012BAD12B02)the Program of International S&T Cooperation of China(2010DFB34230)the Scientific&Technological Innovation Project of Shaanxi,China(2011KTCQ02-02)
文摘We evaluated the effects of neutral detergent soluble fiber (NDSF) and sucrose supplementation on ruminal fermentation, microbial synthesis, and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). The experiment had a 2x2 factorial design with two dosages of sucrose, low (ca. 0.26 g d-1, low-sucrose) and high (ca. 1.01 g d-1, high-sucrose), and two dosages of supplied NDSF, low (1.95 g d-1, Iow-NDSF) and high (2.70 g d-1, high-NDSF). Interactions between NDSF and sucrose were detected for xylanase activity from solid fraction and apparent disappearance of neutral detergent fiber (NDF) and hemicellulose, with the lowest values observed for high-NDSF and high-sucrose treatment. Supplemental NDSF appeared to increase the molar proportion of acetate and reduce that of butyrate; however, the effects of supplemental sucrose on VFA profiles depended upon NDSF amount. There was a NDSFxsucrose interaction for the production of methane. High-NDSF fermenters had lower ammonia-N production, greater daily N flow of solid- associated microbial pellets and total microorganisms, and greater microbial synthesis efficiency compared with low- NDSF fermenters. Supplementation with NDSF resulted in an increase in 16S rDNA copies of Ruminococcusflavefaciens and a reduction in copies of Ruminococcus albus. Supplementation with sucrose tended to increase the 16S rDNA copies ofR. albus from liquid fraction, but did not affect daily total microbial N flow and cellulolytic bacterium populations from solid fraction. These data indicate that the effects of the interaction between NDSF and sugars on ruminal fermentation and fiber digestion should be taken into account in diet formulation. Ruminal fermentation and metabolism of sugars warrant further investigation.
文摘This paper reports the purification and characterization of kinetic parameters of cellulase produced from Trichoderma viride under still culture solid state fermentation technique using cheap and an easily available agricultural waste material, wheat straw as growth supported substrate. Trichoderma viride was cultured in fermentation medium of wheat straw under some previously optimized growth conditions and maximum activity of 398±2.43U/mL obtained after stipulated fermentation time period. Cellulase was purified 2.33 fold with specific activity of 105U/mg in comparison to crude enzyme extract using ammonium sulfate precipitation, dialysis and Sephadex-G-100 column chromatography. The enzyme was shown to have a relative low molecular weight of 58kDa by sodium dodecyl sulphate poly-acrylamide gel electrophoresis. The purified enzyme displayed 6.5 and 55oC as an optimum pH and temperature respectively. Using carboxymethyl cellulose as substrate, the enzyme showed maximum activity (Vmax) of 148U/mL with its corresponding KM value of 68μM. Among activators/inhibitors SDS, EDTA, and Hg2+ showed inhibitory effect on purified cellulase whereas, the enzyme activated by Co2+ and Mn2+ at a concentration of 1mM. The purified cellulase was compatible with four local detergent brands with up to 20 days of shelf life at room temperature suggesting its potential as a detergent additive for improved washing therefore, it is concluded that it may be potentially useful for industrial purposes especially for detergent and laundry industry.
基金supported by the Natural Science Research Project of Anhui Educational Committee (No. KJ2013B273)the National Students’ Innovative Training Program (No. 201210375035)the Scientific Research Foundation for Introduced Scholars, Huangshan University (No. 2013xkjq004 ).
文摘This paper mainly covers a method for preparing a highly alkaline magnesium linoleate solution with a total base number(TBN) value of 328 mg KOH/g using linoleic acid as the biodegradable raw material, which can substitute for traditional lubricant detergents as an environmentally friendly detergent. Reaction conditions, including the molar ratio of magnesium oxide to linoleic acid, the molar ratio of methanol to magnesium oxide, the carbonation temperature, the molar ratio of water to magnesium oxide, the flow rate of CO2 gas and the duration for injection of CO2 to magnesium oxide system, were optimized.