Emerging long-range industrial IoT applications(e.g.,remote patient monitoring)have increasingly higher requirements for global deterministic delay.Although many existing methods have built deterministic networks in s...Emerging long-range industrial IoT applications(e.g.,remote patient monitoring)have increasingly higher requirements for global deterministic delay.Although many existing methods have built deterministic networks in small-scale networks through centralized computing and resource reservation,they cannot be applied on a global scale.The emerging mega-constellations enable new opportunities for realizing deterministic delay globally.As one constellation(e.g.,Starlink)might be managed by a single operator(e.g.,SpaceX),packets can be routed within deterministic number of hops.Moreover,the path diversity brought by the highly symmetrical network structure in mega-constellations can help to construct a congestion free network by routing.This paper leverages these unique characteristics of mega-constellations to avoid the traditional network congestion caused by multiple inputs and single output,and to determine the routing hops,and thus realizing a global deterministic network(DETSPACE).The model based on the 2D Markov chain theoretically verifies the correctness of DETSPACE.The effectiveness of DETSPACE in different traffic load con-ditions is also verified by extensive simulations.展开更多
As a result of the growing complexity of industrial Internet applications,traditional hardware-based network designs are encountering challenges in terms of programmability and dynamic adaptability as they struggle to...As a result of the growing complexity of industrial Internet applications,traditional hardware-based network designs are encountering challenges in terms of programmability and dynamic adaptability as they struggle to meet the real-time,high-reliability transmission requirements for the vast quantities of data generated in industrial environments.This paper proposes a holistic software-defined deterministic network(HSDDN)design solution.This solution uses a centralized controller to implement a comprehensive software definition,ranging from the network layer down to the physical layer.Within the wireless access domain,we decouple the standard radio-frequency modules from baseband processing to realize a software-defined physical layer,which then allows us to adjust the data transmission cycles and tag the trigger rates to meet demand for low-power,high-concurrency transmission.Within the wired network domain,we integrate software-defined networking with time-sensitive networking and propose a coordinated design strategy to address routing and the deterministic scheduling problem.We define a set of constraints to ensure collaborative transmission of the periodic and aperiodic data flows.To guarantee load balancing across all paths and timeslots,we introduce the Jain’s fairness index as the optimization objective and then construct a nondeterministic polynomial-time(NP)-hard joint optimization problem.Furthermore,an algorithm called Tabu search for routing and scheduling with dual-stages(TSRS-DS)is proposed.Simulation experiments demonstrate the effectiveness of the proposed HSDDN architecture.展开更多
Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environment...Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environments, the need for increased reliabilityand reduced latencies in wireless communications is even pronounced. Furthermore, the 5G systems specifically target the URLLCin selected areas and industrial automation might turn into a suitable venue for future IWSNs, running 5G as a high speed inter-process linking technology. In this paper, a hybrid multi-channel scheme for performance and throughput enhancement of IWSNsis proposed. The scheme utilizes the multiple frequency channels to increase the overall throughput of the system along with theincrease in reliability. A special purpose frequency channel is defined, which facilitates the failed communications by retransmis-sions where the retransmission slots are allocated according to the priority level of failed communications of different nodes. Ascheduler is used to formulate priority based scheduling for retransmission in TDMA based communication slots of this channel.Furthermore, in carrier-sense multiple access with collision avoidance(CSMA/CA) based slots, a frequency polling is introducedto limit the collisions. Mathematical modelling for performance metrics is also presented. The performance of the proposed schemeis compared with that of IEEE802.15.4e, where the performance is evaluated on the basis of throughput, reliability and the num-ber of nodes accommodated in a cluster. The proposed scheme offers a notable increase in the reliability and throughput over theexisting IEEE802.15.4e Low Latency Deterministic Networks(LLDN) standard.展开更多
The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distri...The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.展开更多
基金This work is supported by National Key Research and Development Plan of China(2022YFB3105204).
文摘Emerging long-range industrial IoT applications(e.g.,remote patient monitoring)have increasingly higher requirements for global deterministic delay.Although many existing methods have built deterministic networks in small-scale networks through centralized computing and resource reservation,they cannot be applied on a global scale.The emerging mega-constellations enable new opportunities for realizing deterministic delay globally.As one constellation(e.g.,Starlink)might be managed by a single operator(e.g.,SpaceX),packets can be routed within deterministic number of hops.Moreover,the path diversity brought by the highly symmetrical network structure in mega-constellations can help to construct a congestion free network by routing.This paper leverages these unique characteristics of mega-constellations to avoid the traditional network congestion caused by multiple inputs and single output,and to determine the routing hops,and thus realizing a global deterministic network(DETSPACE).The model based on the 2D Markov chain theoretically verifies the correctness of DETSPACE.The effectiveness of DETSPACE in different traffic load con-ditions is also verified by extensive simulations.
基金This work was supported by the National Natural Science Foundation of China(92167205,92167205 and 62025305).
文摘As a result of the growing complexity of industrial Internet applications,traditional hardware-based network designs are encountering challenges in terms of programmability and dynamic adaptability as they struggle to meet the real-time,high-reliability transmission requirements for the vast quantities of data generated in industrial environments.This paper proposes a holistic software-defined deterministic network(HSDDN)design solution.This solution uses a centralized controller to implement a comprehensive software definition,ranging from the network layer down to the physical layer.Within the wireless access domain,we decouple the standard radio-frequency modules from baseband processing to realize a software-defined physical layer,which then allows us to adjust the data transmission cycles and tag the trigger rates to meet demand for low-power,high-concurrency transmission.Within the wired network domain,we integrate software-defined networking with time-sensitive networking and propose a coordinated design strategy to address routing and the deterministic scheduling problem.We define a set of constraints to ensure collaborative transmission of the periodic and aperiodic data flows.To guarantee load balancing across all paths and timeslots,we introduce the Jain’s fairness index as the optimization objective and then construct a nondeterministic polynomial-time(NP)-hard joint optimization problem.Furthermore,an algorithm called Tabu search for routing and scheduling with dual-stages(TSRS-DS)is proposed.Simulation experiments demonstrate the effectiveness of the proposed HSDDN architecture.
文摘Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environments, the need for increased reliabilityand reduced latencies in wireless communications is even pronounced. Furthermore, the 5G systems specifically target the URLLCin selected areas and industrial automation might turn into a suitable venue for future IWSNs, running 5G as a high speed inter-process linking technology. In this paper, a hybrid multi-channel scheme for performance and throughput enhancement of IWSNsis proposed. The scheme utilizes the multiple frequency channels to increase the overall throughput of the system along with theincrease in reliability. A special purpose frequency channel is defined, which facilitates the failed communications by retransmis-sions where the retransmission slots are allocated according to the priority level of failed communications of different nodes. Ascheduler is used to formulate priority based scheduling for retransmission in TDMA based communication slots of this channel.Furthermore, in carrier-sense multiple access with collision avoidance(CSMA/CA) based slots, a frequency polling is introducedto limit the collisions. Mathematical modelling for performance metrics is also presented. The performance of the proposed schemeis compared with that of IEEE802.15.4e, where the performance is evaluated on the basis of throughput, reliability and the num-ber of nodes accommodated in a cluster. The proposed scheme offers a notable increase in the reliability and throughput over theexisting IEEE802.15.4e Low Latency Deterministic Networks(LLDN) standard.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61402485,61303061,and 71201169)
文摘The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.