Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lili...Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lilies.Gibberellin(GA)is a large class of hormones and plays an important role in plant vegetative growth and reproductive development.GAMYB is a group of the R2R3-MYB family upregulated by gibberellin,and plays an important role in anther development.Here,we isolated a novel GAMYB,named LoMYB65,from lily,which was closely related to the AtMYB65 and AtMYB33 in Arabidopsis.Fluorescence quantitative PCR results showed that LoMYB65 was mainly expressed in lily anthers.LoMYB65 could be activated by 288μmol·L^(-1)GA3treatment and the LoMYB65 protein was located in the nucleus and cytoplasm,and had transactivation in yeast and tobacco leaf cells.The conserved motif within 226 amino acids of the C-terminal of LoMYB65 contributed to its transactivation.Overexpression of LoMYB65 caused dwarf phenotype,unnormal tapetum development,less seeds of siliques in transgenic Arabidopsis plants,the transgenic plants showed partly male sterile.Simultaneously,silencing of LoMYB65 with VIGS(Virus Induced Gene Silencing)in lily anthers caused unnormal pollen development and reduced the pollen amount.Overexpression of LoMYB65 in Arabidopsis and silencing of LoMYB65 in lily resulted in decreased pollen counts,so we speculate that LoMYB65 may be dose-dependent.Overall,these findings suggest that LoMYB65 may play an important role in anther development and pollen formation in lily.LoMYB65 may provide a useful candidate gene for pollenless breeding of lily.展开更多
Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been...Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments,ongoing progress is required to ensure these are effective,economical,and accessible for the globally ageing population.As such,continued identification of new potential drug targets and biomarkers is critical."Big data"studies,such as proteomics,can generate information on thousands of possible new targets for dementia diagnostics and therapeutics,but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development.In this review,we discuss current tauopathy biomarkers and therapeutics,and highlight areas in need of improvement,particularly when addressing the needs of frail,comorbid and cognitively impaired populations.We highlight biomarkers which have been developed from proteomic data,and outline possible future directions in this field.We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development,and demonstrate its application to our group's recent tau interactome dataset as an example.展开更多
Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of posts...Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.展开更多
Since 1990,China has made considerable progress in resolving the problem of“treatment difficulty”of cardiovascular diseases(CVD).The prevalent unhealthy lifestyle among Chinese residents has exposed a massive propor...Since 1990,China has made considerable progress in resolving the problem of“treatment difficulty”of cardiovascular diseases(CVD).The prevalent unhealthy lifestyle among Chinese residents has exposed a massive proportion of the population to CVD risk factors,and this situation is further worsened due to the accelerated aging population in China.CVD remains one of the greatest threats to the health of Chinese residents.In terms of the proportions of disease mortality among urban and rural residents in China,CVD has persistently ranked first.In 2021,CVD accounted for 48.98%and 47.35%of deaths in rural and urban areas,respectively.Two out of every five deaths can be attributed to CVD.To implement a national policy“focusing on the primary health institute and emphasizing prevention”and truly achieve a shift of CVD prevention and treatment from hospitals to communities,the National Center for Cardiovascular Diseases has organized experts from relevant fields across China to compile the“Report on Cardiovascular Health and Diseases in China”annually since 2005.The 2024 report is established based on representative,published,and high-quality big-data research results from cross-sectional and cohort population epidemiological surveys,randomized controlled clinical trials,large sample registry studies,and typical community prevention and treatment cases,along with data from some projects undertaken by the National Center for Cardiovascular Diseases.These firsthand data not only enrich the content of the current report but also provide a more timely and comprehensive reflection of the status of CVD prevention and treatment in China.展开更多
With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control ...With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.展开更多
This paper examines the nutrition impacts of using non-solid cooking fuel on under-five children in developing countries.We draw on data from more than 1.12 million children in 62 developing countries from the Demogra...This paper examines the nutrition impacts of using non-solid cooking fuel on under-five children in developing countries.We draw on data from more than 1.12 million children in 62 developing countries from the Demographic and Health Surveys(DHS).Results from both fixed effects(FE)and instrumental variable(IV)estimates show that using non-solid cooking fuel significantly improves the nutrition outcomes of under-five children.Compared with their peers from households mainly using solid fuel,children from households mainly using non-solid fuel exhibit a lower probability of experiencing stunting(by 5.9 percentage points)and being underweight(by 1.2 percentage points).Our further investigation provides evidence for several underlying mechanisms,such as improved indoor air quality,induced reduction in children’s respiratory symptoms,benefits on maternal health,and reduction in maternal time spent on fuel collection or cooking.Heterogenous analyses suggest that the nutrition benefits of using non-solid cooking fuel are more prominent among boys,children above three years old,and those from households of lower socioeconomic status,rural areas,and Southeast Asia.展开更多
AIM:To investigate the prevalence of visual impairment(VI)and provide an estimation of uncorrected refractive errors in school-aged children,conducted by optometry students as a community service.METHODS:The study was...AIM:To investigate the prevalence of visual impairment(VI)and provide an estimation of uncorrected refractive errors in school-aged children,conducted by optometry students as a community service.METHODS:The study was cross-sectional.Totally 3343 participants were included in the study.The initial examination involved assessing the uncorrected distance visual acuity(UDVA)and visual acuity(VA)while using a+2.00 D lens.The inclusion criteria for a subsequent comprehensive cycloplegic eye examination,performed by an optometrist,were as follows:a UDVA<0.6 decimal(0.20 logMAR)and/or a VA with+2.00 D≥0.8 decimal(0.96 logMAR).RESULTS:The sample had a mean age of 10.92±2.13y(range 4 to 17y),and 51.3%of the children were female(n=1715).The majority of the children(89.7%)fell within the age range of 8 to 14y.Among the ethnic groups,the highest representation was from the Luhya group(60.6%)followed by Luo(20.4%).Mean logMAR UDVA choosing the best eye for each student was 0.29±0.17(range 1.70 to 0.22).Out of the total,246 participants(7.4%)had a full eye examination.The estimated prevalence of myopia(defined as spherical equivalent≤-0.5 D)was found to be 1.45%of the total sample.While around 0.18%of the total sample had hyperopia value exceeding+1.75 D.Refractive astigmatism(cil<-0.75 D)was found in 0.21%(7/3343)of the children.The VI prevalence was 1.26%of the total sample.Among our cases of VI,76.2%could be attributed to uncorrected refractive error.Amblyopia was detected in 0.66%(22/3343)of the screened children.There was no statistically significant correlation observed between age or gender and refractive values.CONCLUSION:The primary cause of VI is determined to be uncorrected refractive errors,with myopia being the most prevalent refractive error observed.These findings underscore the significance of early identification and correction of refractive errors in school-aged children as a means to alleviate the impact of VI.展开更多
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not...Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.展开更多
Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered ...Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.展开更多
Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into t...Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.展开更多
BACKGROUND Our study contributes to the further understanding of the mechanism of foot reflexology.Foot reflexology has been reported to affect hearing recovery,but no physiological evidence has been provided.This lac...BACKGROUND Our study contributes to the further understanding of the mechanism of foot reflexology.Foot reflexology has been reported to affect hearing recovery,but no physiological evidence has been provided.This lack of evidence hampers the acceptance of the technique in clinical practice.CASE SUMMARY A girl was taken to North Sichuan Medical University Affiliated Hospital for a hearing screen by her parents.Her parents reported that her hearing level was the same as when she was born.The girl was diagnosed with sensorineural hearing loss(SNHL)by a doctor in the otolaryngology department.After we introduced the foot reflexology project,the parents agreed to participate in the experiment.After 6 months of foot reflexology treatment,the hearing threshold of the girl recovered to a normal level,below 30 dB.CONCLUSION Foot reflexology should be encouraged in clinical practice and for families of infants with SNHL.展开更多
Mongolia,a key partner in the Belt and Road Initiative,is fully dedicated to fostering regional cooperation and connectivity.Standardization has emerged as a vital field with far-reaching influence for regional trade ...Mongolia,a key partner in the Belt and Road Initiative,is fully dedicated to fostering regional cooperation and connectivity.Standardization has emerged as a vital field with far-reaching influence for regional trade cooperation.This paper makes an in-depth analysis of the standards approved in Mongolia in 2021 and 2022,offering a fresh perspective of the past two years’standardization development in the country.The primary objective is to present an updated account of Mongolia’s standardization efforts and to facilitate regional cooperation and exchange in standardization.展开更多
This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste...This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.展开更多
Neuropeptides are widely distributed in vertebrates and invertebrates,regulating a variety of physiological activities in the organisms,such as metabolism,feeding and reproduction.In this study,to explore the function...Neuropeptides are widely distributed in vertebrates and invertebrates,regulating a variety of physiological activities in the organisms,such as metabolism,feeding and reproduction.In this study,to explore the function of neuropeptide LFRFamide in Sepia pharaonis,the full-length cDNA of LFRFamide-like gene(named SpLFRFL,MG869822.1)was identified with rapid amplification of cDNA ends(RACE)method.The sequence of SpLFRFL was 860 bp in length and encoded 188 amino acids containing 4 different mature peptides:1 copy of PHTPFRFamide,NSLFRFamide,TIFRFamide,and 3 copies of GNLFRFamide.Multiple alignment and phylogenetic analysis results showed that SpLFRFL shared high identity with LFRFamides of Sepia officinalis and Sepiella japonica and had the closest relationship with them.Through quantitative Real-time PCR(qRT-PCR),it was found that the SpLFRFL gene was highly expressed in the optic lobe and brain at three different stages during gonad development in both genders.Moreover,the four mature peptides at a concentration of 0.01μmol L^(−1) could inhibit the protein synthesis in the Chinese hamster ovary cell strain-K1(CHOK1)induced by SpGnRH.These data suggest that SpLFRFL might be involved in the development and reproduction of S.pharaonis.The results can contribute to future studies on neuropeptide evolution and function and benefit the cuttlefish farming.展开更多
This paper aims to interpret the connotation of high-quality development of tourism economy(HQTE)from the perspective of the new development concepts of innovation,coordination,green,openness and sharing,and then to e...This paper aims to interpret the connotation of high-quality development of tourism economy(HQTE)from the perspective of the new development concepts of innovation,coordination,green,openness and sharing,and then to evaluate the spatial differenti-ation of China’s HQTE based on provincial panel data from 2009 to 2018.Specifically,we employ the spatial convergence model to ex-plore the absolute and conditionalβconvergence trends of HQTE in the whole country and the eastern,central and western regions of China.Our empirical results reveal that:1)within the decade,from 2009 to 2018,regions of China with the highest HQTE index is its eastern region followed by the central region and then the western region,but the fastest growing one is the western region of China fol-lowed by the central region and then the eastern region.2)Whether or not the spatial effect is included,there are absolute and condition-alβconvergence in HQTE in the whole country and aforementioned three regions.3)The degree of government attention as well as the level of economic development and location accessibility are the positive driving factors for the convergence of HQTE in the whole country and the three regions.The degree of marketization and human capital have not passed the significance test either in the whole country or in the three regions.The above conclusions could deepen the understanding of the regional imbalance and spatial conver-gence characteristics of HQTE,clarify the primary development objects,and accomplish the goal of China’s HQTE.展开更多
Testicular development is an important biological process in male and requires interaction between the male germ cells and somatic cells.However,the mechanisms of testicular development in livestock,particularly in ca...Testicular development is an important biological process in male and requires interaction between the male germ cells and somatic cells.However,the mechanisms of testicular development in livestock,particularly in cattle,are poorly understood.Furthermore,cellular heterogeneity hinders the profiling of different cell types at different developmental stages.In this study,we first performed a single-cell transcriptomic study of the bovine testis development during puberty by using 10×genomics single-cell RNA sequencing(scRNA-seq).By collecting the scRNA-seq data from 11,083 cells from prepubertal and pubertal bovine testes,a high-resolution scRNA-seq atlas was described,identifying 9 somatic and 13 spermatogenic clusters.We also distinguished several stage-specific marker genes for bovine germ cells and somatic cells,such as GRAF2 and MORC1 for SSC(spermatogonial stem cells),HJURP and TCF19 for differentiating spermatogonia,ARSE for immature Sertoli,CLEC12B for mature Sertoli,LOC112441470 for Leydig.In conclusion,we have examined the transcription levels and constructed the single-cell developmental maps of germ cells and somatic cells during testicular development in Angus cattle.The datasets provided new insights into spermatogenesis and testicular somatic cell development in cattle.展开更多
Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The s...Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The succession patterns of methanotrophic communities and functions in Wudalianchi volcano forest soils could provide a basis for the study of evolutionary mechanisms between soil microorganisms,the environment,and carbon cycling of temperate forest ecosystems under climate change.In this study,the characteristics and drivers of methanotrophic community structure and function of two volcanic soils at different stages of development are analyzed,including an old volcano and a new volcano,which most recently erupted 300 years and 17-19×10^(5)years ago,respectively,and a non-volcano hills as control,based on space for time substitution and Miseq sequencing and bioinformation technology.The results showed that CH_(4) fluxes were significantly higher in old-stage volcano forest soils than new-stage forest soils and non-volcano forest soils.There were significant differences in the community composition and diversity of soil methanotrophs from different volcano forest soils.Methylococcus was the dominant genus in all soil samples.Additionally,the relative abundance of Methylococcus,along with Clonothrix,Methyloglobulus,Methylomagum,Methylomonas and Methylosarcina,were the important genera responsible for the differences in methanotrophic community structure in different volcano forest soils.The relative abundance of methanotroph belonging toγ-proteobacteria was significantly higher than that belonging toα-proteobacteria(P<0.05).Chao1,Shannon and Simpson indices of soil methanotrophic community were significantly lower in new-stage volcanos and were significantly affected by bulk density,total porosity,p H,nitrate,dissolved organic carbon and dissolved organic nitrogen.There were significant differences in community structure between new-stage and old-stage volcanoes.Bulk density and p H are important soil properties contributing to the divergence of methanotrophs community structure,and changes in soil properties due to soil development time are important factors driving differences in methanotrophs communities in Wudalianchi volcanic soils.展开更多
An increasing number of geological hazards along high-speed railways on the Qinghai‒Tibetan Plateau have occurred and have resulted in a profound influence on old infrastructure,which has attracted increasing attentio...An increasing number of geological hazards along high-speed railways on the Qinghai‒Tibetan Plateau have occurred and have resulted in a profound influence on old infrastructure,which has attracted increasing attention.The landslide event that occurred on September 15,2022,in Jiujiawan village,Xining city,Qinghai Province,is a typical case.Based on field investigations and remote sensing interpretations,a comprehensive analysis was conducted on the landslide.Additionally,the potential secondary failure of the current Jiujiawan landslide was assessed using Fast Lagrangian Analysis of Continua in Three Dimensions(FLAC3D).Based on the application of the small baseline subset-interferometric synthetic aperture radar(SBAS-InSAR)technique to SAR images from February 24,2017 to September 14,2022,a significant westward horizontal deformation was found to have been formed prior to the occurrence of the landslide.The maximum annual average deformation rate in the line of sight(LOS)direction reached-45 mm/yr,with a maximum cumulative deformation of-178 mm.This value was consistent with the continual increase in annual precipitation(2.51 mm/yr)prior to the occurrence of the landslide.The accumulated precipitation before the landslide was 279.8 mm,accounting for 54.2%of the total annual precipitation,with a particularly notable surge in monthly precipitation observed during August(250.3 mm).Additionally,the occurrence of a seismic event with a magnitude of Ms 6.9 in Menyuan County,80 km away from Xining,could be a potential triggering factor to the landslide,as evidenced by an abrupt subsidence alteration observed prior to and following the earthquake.The maximum subsidence in the line of sight(LOS)direction exceeded 11 mm,exhibiting a highly consistent spatial distribution with the occurrence range of landslides.These results suggest that the Jiujiawan landslide was likely induced by earthquake events in the early stage and heavy rainfall in the later stage.The FLAC3D numerical simulation show that after the landslide,the slope remained marginally stable under natural conditions;however,it is susceptible to reactivation with heavy rainfall.展开更多
Wings are an important flight organ of insects.Wing development is a complex process controlled by a series of genes.The flightless wing pad transforms into a mature wing with the function of migratory flight during t...Wings are an important flight organ of insects.Wing development is a complex process controlled by a series of genes.The flightless wing pad transforms into a mature wing with the function of migratory flight during the nymphto-adult metamorphosis.However,the mechanism of wing morphogenesis in locusts is still unclear.This study analyzed the microstructures of the locust wing pads at pre-eclosion and the wings after eclosion and performed the comparative transcriptome analysis.RNA-seq identified 25,334 unigenesand 3,430 differentially expressed genes(DEGs)(1,907 up-regulated and 1,523 down-regulated).The DEGs mainly included cuticle development(LmACPs),chitin metabolism(Lm Idgf4),lipid metabolism-related genes,cell adhesion(Integrin),zinc finger transcription factors(LmSalm,LmZF593 andLmZF521),and others.Functional analysis based on RNA interference and hematoxylin and eosin(H&E)staining showed that the three genes encoded zinc finger transcription factors are essential for forming wing cuticle and maintaining morphology in Locusta migratoria.Finally,the study found that the LmSalm regulates the expression of LmACPs in the wing pads at pre-eclosion,and LmZF593 and LmZF521 regulate the expression of LmIntegrin/LmIdgf4/LmHMT420 in the wings after eclosion.This study revealed that the molecular regulatory axis controls wing morphology in nymphal and adult stages of locusts,offering a theoretical basis for the study of wing development mechanisms in hemimetabolous insects.展开更多
基金supported by the National Key Research and Development Program of China(2022YFD1200500)the Fundamental Research Funds for the Central Universities(KYZZ2022004)+1 种基金the Project for Crop Germplasm Resources Conservation of Jiangsu(2021-SJ-011)the High Level Talent Project of the Top Six Talents in Jiangsu(NY-077)。
文摘Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lilies.Gibberellin(GA)is a large class of hormones and plays an important role in plant vegetative growth and reproductive development.GAMYB is a group of the R2R3-MYB family upregulated by gibberellin,and plays an important role in anther development.Here,we isolated a novel GAMYB,named LoMYB65,from lily,which was closely related to the AtMYB65 and AtMYB33 in Arabidopsis.Fluorescence quantitative PCR results showed that LoMYB65 was mainly expressed in lily anthers.LoMYB65 could be activated by 288μmol·L^(-1)GA3treatment and the LoMYB65 protein was located in the nucleus and cytoplasm,and had transactivation in yeast and tobacco leaf cells.The conserved motif within 226 amino acids of the C-terminal of LoMYB65 contributed to its transactivation.Overexpression of LoMYB65 caused dwarf phenotype,unnormal tapetum development,less seeds of siliques in transgenic Arabidopsis plants,the transgenic plants showed partly male sterile.Simultaneously,silencing of LoMYB65 with VIGS(Virus Induced Gene Silencing)in lily anthers caused unnormal pollen development and reduced the pollen amount.Overexpression of LoMYB65 in Arabidopsis and silencing of LoMYB65 in lily resulted in decreased pollen counts,so we speculate that LoMYB65 may be dose-dependent.Overall,these findings suggest that LoMYB65 may play an important role in anther development and pollen formation in lily.LoMYB65 may provide a useful candidate gene for pollenless breeding of lily.
基金supported by funding from the Bluesand Foundation,Alzheimer's Association(AARG-21-852072 and Bias Frangione Early Career Achievement Award)to EDan Australian Government Research Training Program scholarship and the University of Sydney's Brain and Mind Centre fellowship to AH。
文摘Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments,ongoing progress is required to ensure these are effective,economical,and accessible for the globally ageing population.As such,continued identification of new potential drug targets and biomarkers is critical."Big data"studies,such as proteomics,can generate information on thousands of possible new targets for dementia diagnostics and therapeutics,but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development.In this review,we discuss current tauopathy biomarkers and therapeutics,and highlight areas in need of improvement,particularly when addressing the needs of frail,comorbid and cognitively impaired populations.We highlight biomarkers which have been developed from proteomic data,and outline possible future directions in this field.We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development,and demonstrate its application to our group's recent tau interactome dataset as an example.
基金supported by the National Natural Science Foundation of China(82171506 and 31872778)Discipline Innovative Engineering Plan(111 Program)of China(B13036)+3 种基金Key Laboratory Grant from Hunan Province(2016TP1006)Department of Science and Technology of Hunan Province(2021DK2001,Innovative Team Program 2019RS1010)Innovation-Driven Team Project from Central South University(2020CX016)Hunan Hundred Talents Program for Young Outstanding Scientists。
文摘Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.
文摘Since 1990,China has made considerable progress in resolving the problem of“treatment difficulty”of cardiovascular diseases(CVD).The prevalent unhealthy lifestyle among Chinese residents has exposed a massive proportion of the population to CVD risk factors,and this situation is further worsened due to the accelerated aging population in China.CVD remains one of the greatest threats to the health of Chinese residents.In terms of the proportions of disease mortality among urban and rural residents in China,CVD has persistently ranked first.In 2021,CVD accounted for 48.98%and 47.35%of deaths in rural and urban areas,respectively.Two out of every five deaths can be attributed to CVD.To implement a national policy“focusing on the primary health institute and emphasizing prevention”and truly achieve a shift of CVD prevention and treatment from hospitals to communities,the National Center for Cardiovascular Diseases has organized experts from relevant fields across China to compile the“Report on Cardiovascular Health and Diseases in China”annually since 2005.The 2024 report is established based on representative,published,and high-quality big-data research results from cross-sectional and cohort population epidemiological surveys,randomized controlled clinical trials,large sample registry studies,and typical community prevention and treatment cases,along with data from some projects undertaken by the National Center for Cardiovascular Diseases.These firsthand data not only enrich the content of the current report but also provide a more timely and comprehensive reflection of the status of CVD prevention and treatment in China.
基金supported by the Humanities and Social Sciences Program of Jiangxi Universities(Grant No.GL21129)the Graduate Student Innovation Fund Program of Gannan Normal University(Grant No.YCX23A043)the Open Subject of Geography Discipline Construction of Gannan Normal University(Grant No.200084).
文摘With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.
基金This work was supported by the National Natural Science Foundation of China(71861147003 and 71925009).
文摘This paper examines the nutrition impacts of using non-solid cooking fuel on under-five children in developing countries.We draw on data from more than 1.12 million children in 62 developing countries from the Demographic and Health Surveys(DHS).Results from both fixed effects(FE)and instrumental variable(IV)estimates show that using non-solid cooking fuel significantly improves the nutrition outcomes of under-five children.Compared with their peers from households mainly using solid fuel,children from households mainly using non-solid fuel exhibit a lower probability of experiencing stunting(by 5.9 percentage points)and being underweight(by 1.2 percentage points).Our further investigation provides evidence for several underlying mechanisms,such as improved indoor air quality,induced reduction in children’s respiratory symptoms,benefits on maternal health,and reduction in maternal time spent on fuel collection or cooking.Heterogenous analyses suggest that the nutrition benefits of using non-solid cooking fuel are more prominent among boys,children above three years old,and those from households of lower socioeconomic status,rural areas,and Southeast Asia.
文摘AIM:To investigate the prevalence of visual impairment(VI)and provide an estimation of uncorrected refractive errors in school-aged children,conducted by optometry students as a community service.METHODS:The study was cross-sectional.Totally 3343 participants were included in the study.The initial examination involved assessing the uncorrected distance visual acuity(UDVA)and visual acuity(VA)while using a+2.00 D lens.The inclusion criteria for a subsequent comprehensive cycloplegic eye examination,performed by an optometrist,were as follows:a UDVA<0.6 decimal(0.20 logMAR)and/or a VA with+2.00 D≥0.8 decimal(0.96 logMAR).RESULTS:The sample had a mean age of 10.92±2.13y(range 4 to 17y),and 51.3%of the children were female(n=1715).The majority of the children(89.7%)fell within the age range of 8 to 14y.Among the ethnic groups,the highest representation was from the Luhya group(60.6%)followed by Luo(20.4%).Mean logMAR UDVA choosing the best eye for each student was 0.29±0.17(range 1.70 to 0.22).Out of the total,246 participants(7.4%)had a full eye examination.The estimated prevalence of myopia(defined as spherical equivalent≤-0.5 D)was found to be 1.45%of the total sample.While around 0.18%of the total sample had hyperopia value exceeding+1.75 D.Refractive astigmatism(cil<-0.75 D)was found in 0.21%(7/3343)of the children.The VI prevalence was 1.26%of the total sample.Among our cases of VI,76.2%could be attributed to uncorrected refractive error.Amblyopia was detected in 0.66%(22/3343)of the screened children.There was no statistically significant correlation observed between age or gender and refractive values.CONCLUSION:The primary cause of VI is determined to be uncorrected refractive errors,with myopia being the most prevalent refractive error observed.These findings underscore the significance of early identification and correction of refractive errors in school-aged children as a means to alleviate the impact of VI.
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
基金supported by grants from the National Health and Medical Research Council(NHMRC)of Australia(Nos.571100 and 1048082)the Baxter Charitable Foundation(to TCL)+1 种基金Medical Research grants from the Rebecca L.Cooper Medical Research Foundation(to MWW,TCL,and MDL)supported by a Charles D.Kelman,M.D.Postdoctoral Award(2010)from the International Retinal Research Foundation(USA)。
文摘Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.
基金partially supported by the Natural Science Foundation of Zhejiang Province(Award number:D21C170001)the National Natural Science Foundation of China(Award number:31973000)。
文摘Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.
基金funded by National Natural Science Foundation of China(Grants No.42171210,42371194)Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(Grant No.22JJD790015).
文摘Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.
基金Graduate Student Project of Xi’an International Studies University,No.2021BS012Nanchong City-Universities Project,No.22SXCXTD0004.
文摘BACKGROUND Our study contributes to the further understanding of the mechanism of foot reflexology.Foot reflexology has been reported to affect hearing recovery,but no physiological evidence has been provided.This lack of evidence hampers the acceptance of the technique in clinical practice.CASE SUMMARY A girl was taken to North Sichuan Medical University Affiliated Hospital for a hearing screen by her parents.Her parents reported that her hearing level was the same as when she was born.The girl was diagnosed with sensorineural hearing loss(SNHL)by a doctor in the otolaryngology department.After we introduced the foot reflexology project,the parents agreed to participate in the experiment.After 6 months of foot reflexology treatment,the hearing threshold of the girl recovered to a normal level,below 30 dB.CONCLUSION Foot reflexology should be encouraged in clinical practice and for families of infants with SNHL.
文摘Mongolia,a key partner in the Belt and Road Initiative,is fully dedicated to fostering regional cooperation and connectivity.Standardization has emerged as a vital field with far-reaching influence for regional trade cooperation.This paper makes an in-depth analysis of the standards approved in Mongolia in 2021 and 2022,offering a fresh perspective of the past two years’standardization development in the country.The primary objective is to present an updated account of Mongolia’s standardization efforts and to facilitate regional cooperation and exchange in standardization.
文摘This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.
基金supported by the National Natural Science Foundation of China(No.31872547)the Natural Science Foundation of Zhejiang Province,China(No.LY20 C190007)+1 种基金the Open Foundation from Marine Sciences in the First-Class Subjects of Zhejiang(No.OFMS004)the Excellent Postdoctoral Program of Jiangsu Province(No.314865).
文摘Neuropeptides are widely distributed in vertebrates and invertebrates,regulating a variety of physiological activities in the organisms,such as metabolism,feeding and reproduction.In this study,to explore the function of neuropeptide LFRFamide in Sepia pharaonis,the full-length cDNA of LFRFamide-like gene(named SpLFRFL,MG869822.1)was identified with rapid amplification of cDNA ends(RACE)method.The sequence of SpLFRFL was 860 bp in length and encoded 188 amino acids containing 4 different mature peptides:1 copy of PHTPFRFamide,NSLFRFamide,TIFRFamide,and 3 copies of GNLFRFamide.Multiple alignment and phylogenetic analysis results showed that SpLFRFL shared high identity with LFRFamides of Sepia officinalis and Sepiella japonica and had the closest relationship with them.Through quantitative Real-time PCR(qRT-PCR),it was found that the SpLFRFL gene was highly expressed in the optic lobe and brain at three different stages during gonad development in both genders.Moreover,the four mature peptides at a concentration of 0.01μmol L^(−1) could inhibit the protein synthesis in the Chinese hamster ovary cell strain-K1(CHOK1)induced by SpGnRH.These data suggest that SpLFRFL might be involved in the development and reproduction of S.pharaonis.The results can contribute to future studies on neuropeptide evolution and function and benefit the cuttlefish farming.
基金Under the auspices of the National Natural Science Foundation of China(No.42001156)。
文摘This paper aims to interpret the connotation of high-quality development of tourism economy(HQTE)from the perspective of the new development concepts of innovation,coordination,green,openness and sharing,and then to evaluate the spatial differenti-ation of China’s HQTE based on provincial panel data from 2009 to 2018.Specifically,we employ the spatial convergence model to ex-plore the absolute and conditionalβconvergence trends of HQTE in the whole country and the eastern,central and western regions of China.Our empirical results reveal that:1)within the decade,from 2009 to 2018,regions of China with the highest HQTE index is its eastern region followed by the central region and then the western region,but the fastest growing one is the western region of China fol-lowed by the central region and then the eastern region.2)Whether or not the spatial effect is included,there are absolute and condition-alβconvergence in HQTE in the whole country and aforementioned three regions.3)The degree of government attention as well as the level of economic development and location accessibility are the positive driving factors for the convergence of HQTE in the whole country and the three regions.The degree of marketization and human capital have not passed the significance test either in the whole country or in the three regions.The above conclusions could deepen the understanding of the regional imbalance and spatial conver-gence characteristics of HQTE,clarify the primary development objects,and accomplish the goal of China’s HQTE.
基金supported by the National Natural Science Foundation of China(81770514)the 2020 Scientist Plus Engineer Program of Shaanxi Province,China(K4050422468)+2 种基金the Key Research&Development Plan of Shaanxi Province,China(2020NY-002)the Natural Science Basis Research Plan of Shaanxi Province,China(2023-JC-QN-0242)the China Agriculture Research System of MOF and MARA(CARS-37)。
文摘Testicular development is an important biological process in male and requires interaction between the male germ cells and somatic cells.However,the mechanisms of testicular development in livestock,particularly in cattle,are poorly understood.Furthermore,cellular heterogeneity hinders the profiling of different cell types at different developmental stages.In this study,we first performed a single-cell transcriptomic study of the bovine testis development during puberty by using 10×genomics single-cell RNA sequencing(scRNA-seq).By collecting the scRNA-seq data from 11,083 cells from prepubertal and pubertal bovine testes,a high-resolution scRNA-seq atlas was described,identifying 9 somatic and 13 spermatogenic clusters.We also distinguished several stage-specific marker genes for bovine germ cells and somatic cells,such as GRAF2 and MORC1 for SSC(spermatogonial stem cells),HJURP and TCF19 for differentiating spermatogonia,ARSE for immature Sertoli,CLEC12B for mature Sertoli,LOC112441470 for Leydig.In conclusion,we have examined the transcription levels and constructed the single-cell developmental maps of germ cells and somatic cells during testicular development in Angus cattle.The datasets provided new insights into spermatogenesis and testicular somatic cell development in cattle.
基金the Special Projects for the Central Government to guide the development of local science and technology(ZY20B15)the Key Research&Development Program funding project of Heilongjiang Province(GA21C030)the Research Funds of Provincial Research Institutes of Heilongjiang Province(ZNBZ2022ZR07)。
文摘Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The succession patterns of methanotrophic communities and functions in Wudalianchi volcano forest soils could provide a basis for the study of evolutionary mechanisms between soil microorganisms,the environment,and carbon cycling of temperate forest ecosystems under climate change.In this study,the characteristics and drivers of methanotrophic community structure and function of two volcanic soils at different stages of development are analyzed,including an old volcano and a new volcano,which most recently erupted 300 years and 17-19×10^(5)years ago,respectively,and a non-volcano hills as control,based on space for time substitution and Miseq sequencing and bioinformation technology.The results showed that CH_(4) fluxes were significantly higher in old-stage volcano forest soils than new-stage forest soils and non-volcano forest soils.There were significant differences in the community composition and diversity of soil methanotrophs from different volcano forest soils.Methylococcus was the dominant genus in all soil samples.Additionally,the relative abundance of Methylococcus,along with Clonothrix,Methyloglobulus,Methylomagum,Methylomonas and Methylosarcina,were the important genera responsible for the differences in methanotrophic community structure in different volcano forest soils.The relative abundance of methanotroph belonging toγ-proteobacteria was significantly higher than that belonging toα-proteobacteria(P<0.05).Chao1,Shannon and Simpson indices of soil methanotrophic community were significantly lower in new-stage volcanos and were significantly affected by bulk density,total porosity,p H,nitrate,dissolved organic carbon and dissolved organic nitrogen.There were significant differences in community structure between new-stage and old-stage volcanoes.Bulk density and p H are important soil properties contributing to the divergence of methanotrophs community structure,and changes in soil properties due to soil development time are important factors driving differences in methanotrophs communities in Wudalianchi volcanic soils.
基金supported by the Natural Science Foundation of Qinghai Province,China(No.2024-SF-129).
文摘An increasing number of geological hazards along high-speed railways on the Qinghai‒Tibetan Plateau have occurred and have resulted in a profound influence on old infrastructure,which has attracted increasing attention.The landslide event that occurred on September 15,2022,in Jiujiawan village,Xining city,Qinghai Province,is a typical case.Based on field investigations and remote sensing interpretations,a comprehensive analysis was conducted on the landslide.Additionally,the potential secondary failure of the current Jiujiawan landslide was assessed using Fast Lagrangian Analysis of Continua in Three Dimensions(FLAC3D).Based on the application of the small baseline subset-interferometric synthetic aperture radar(SBAS-InSAR)technique to SAR images from February 24,2017 to September 14,2022,a significant westward horizontal deformation was found to have been formed prior to the occurrence of the landslide.The maximum annual average deformation rate in the line of sight(LOS)direction reached-45 mm/yr,with a maximum cumulative deformation of-178 mm.This value was consistent with the continual increase in annual precipitation(2.51 mm/yr)prior to the occurrence of the landslide.The accumulated precipitation before the landslide was 279.8 mm,accounting for 54.2%of the total annual precipitation,with a particularly notable surge in monthly precipitation observed during August(250.3 mm).Additionally,the occurrence of a seismic event with a magnitude of Ms 6.9 in Menyuan County,80 km away from Xining,could be a potential triggering factor to the landslide,as evidenced by an abrupt subsidence alteration observed prior to and following the earthquake.The maximum subsidence in the line of sight(LOS)direction exceeded 11 mm,exhibiting a highly consistent spatial distribution with the occurrence range of landslides.These results suggest that the Jiujiawan landslide was likely induced by earthquake events in the early stage and heavy rainfall in the later stage.The FLAC3D numerical simulation show that after the landslide,the slope remained marginally stable under natural conditions;however,it is susceptible to reactivation with heavy rainfall.
基金This work was supported by the National Key R&D Program of China(2022YFD1700200)the National Natural Science Foundation of China(31970469)+2 种基金earmarked fund for Modern Agro-industry Technology Research System,China(2023CYJSTX01-20)the Fund for Shanxi“1331 Project”,Chinathe Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China(2022Y032)。
文摘Wings are an important flight organ of insects.Wing development is a complex process controlled by a series of genes.The flightless wing pad transforms into a mature wing with the function of migratory flight during the nymphto-adult metamorphosis.However,the mechanism of wing morphogenesis in locusts is still unclear.This study analyzed the microstructures of the locust wing pads at pre-eclosion and the wings after eclosion and performed the comparative transcriptome analysis.RNA-seq identified 25,334 unigenesand 3,430 differentially expressed genes(DEGs)(1,907 up-regulated and 1,523 down-regulated).The DEGs mainly included cuticle development(LmACPs),chitin metabolism(Lm Idgf4),lipid metabolism-related genes,cell adhesion(Integrin),zinc finger transcription factors(LmSalm,LmZF593 andLmZF521),and others.Functional analysis based on RNA interference and hematoxylin and eosin(H&E)staining showed that the three genes encoded zinc finger transcription factors are essential for forming wing cuticle and maintaining morphology in Locusta migratoria.Finally,the study found that the LmSalm regulates the expression of LmACPs in the wing pads at pre-eclosion,and LmZF593 and LmZF521 regulate the expression of LmIntegrin/LmIdgf4/LmHMT420 in the wings after eclosion.This study revealed that the molecular regulatory axis controls wing morphology in nymphal and adult stages of locusts,offering a theoretical basis for the study of wing development mechanisms in hemimetabolous insects.