The qualitative solutions of dynamical system expressed with nonlinear differential equation can be divided into two categories. One is that the motion of phase point may approach infinite or stable equilibrium point ...The qualitative solutions of dynamical system expressed with nonlinear differential equation can be divided into two categories. One is that the motion of phase point may approach infinite or stable equilibrium point eventually. Neither periodic excited source nor self-excited oscillation exists in such nonlinear dynamic circuits, so its solution cannot be treated as the synthesis of multiharmonic. And the other is that the endless vibration of phase point is limited within certain range, moreover possesses character of sustained oscillation, namely the bounded nonlinear oscillation. It can persistently and repeatedly vibration after dynamic variable entering into steady state;moreover the motion of phase point will not approach infinite at last;system has not stable equilibrium point. The motional trajectory can be described by a bounded space curve. So far, the curve cannot be represented by concretely explicit parametric form in math. It cannot be expressed analytically by human. The chaos is a most universally common form of bounded nonlinear oscillation. A number of chaotic systems, such as Lorenz equation, Chua’s circuit and lossless system in modern times are some examples among thousands of chaotic equations. In this work, basic properties related to the bounded space curve will be comprehensively summarized by analyzing these examples.展开更多
In this paper, first, we investigate a novel one-dimensional logistic-PWLCM(LP) modulation map which is derived from the logistic and PWLCM maps. Second, we propose a novel PCLML spatiotemporal chaos in pseudo-rando...In this paper, first, we investigate a novel one-dimensional logistic-PWLCM(LP) modulation map which is derived from the logistic and PWLCM maps. Second, we propose a novel PCLML spatiotemporal chaos in pseudo-random coupling method that can accelerate the system behavior of the fully spatial chaos. Here, because the better chaotic properties include a wide range of parameter settings and better ergodicity than a logistic map, the LP is used in PCLML as f(x). The Kolmogorov–Sinai entropy density and universality and the bifurcation diagram are employed to investigate the chaotic behaviors of the proposed PCLML model. Finally, we apply the LP and PCLML chaotic systems to image encryption to improve the effectiveness and security of the encryption scheme. By combining self-generating matrix model M and dynamic substitution box(S-Box) methods, we design a new image encryption algorithm. Numerical simulations and security analysis have been carried out to demonstrate that the proposed algorithm has a high security level and can efficiently encrypt several different kinds of images into random-like images.展开更多
The wireless sensor network (WSN) has been widely used in various fields, but it still remains in the preliminary discovery and research phase with a lack of various related mature technologies. Traditional encrypti...The wireless sensor network (WSN) has been widely used in various fields, but it still remains in the preliminary discovery and research phase with a lack of various related mature technologies. Traditional encryption schemes are not suitable for wireless sensor networks due to intrinsic features of the nodes such as low energy, limited computation capability, and lack of storage resources. In this paper, we present a novel block encryption scheme based on the integer discretization of a chaotic map, the Feistel network structure, and an S-box. The novel scheme is fast, secure, has low resource consumption and is suitable for wireless sensor network node encryption schemes. The experimental tests are carried out with detailed analysis, showing that the novel block algorithm has a large key space, very good diffusion and disruptive performances, a strict avalanche effect, excellent statistical balance, and fast encryption speed. These features enable the encryption scheme to pass the SP800-22 test. Meanwhile, the analysis and the testing of speed, time, and storage space on the simulator platform show that this new encryption scheme is well able to hide data information in wireless sensor networks.展开更多
A novel framework for chaos and its impul-sive control in Chua's oscillator via time-delay feedback is presented.The exponential stability of impulsive control Chua's oscillator via time-delay feedback is considered...A novel framework for chaos and its impul-sive control in Chua's oscillator via time-delay feedback is presented.The exponential stability of impulsive control Chua's oscillator via time-delay feedback is considered,and some novel conditions are obtained.Then a novel impulsive controller design procedure is proposed.Simulation experiments are provided to demonstrate the feasibility and effectiveness of our method finally.展开更多
We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initi...We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N 〉 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words "winning" and "loosing" in the classical Parrondo's paradox with "order" and "chaos", respectively, the PS algorithm leads to the generalized Parrondo's paradox: chaos1 + chaos2 +..- + chaosN = order and order1 + order2 +.-. + orderN = chaos. Finally, the concept is well demon- strated with the results based on the fractional-order Chen system.展开更多
This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then...This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.展开更多
This paper reports that an impulsive control theory for synchronization of nonlinear Rossler chaotic systems is developed. A new framework for impulsive synchronization between such chaotic systems is presented, which...This paper reports that an impulsive control theory for synchronization of nonlinear Rossler chaotic systems is developed. A new framework for impulsive synchronization between such chaotic systems is presented, which makes the synchronization error system a linear impulsive control system. Therefore, it is easy to derive the impulsive synchronizution law. The proposed impulsive control scheme is illustrated by nonlinear Rossler chaotic systems and the simulation results demonstrate the effectiveness of the method.展开更多
This paper studies the robust fuzzy control for nonlinear chaotic system in the presence of parametric uncertainties. An uncertain Takagi-Sugeno (T-S) fuzzy model is employed for fuzzy modelling of an unknown chaoti...This paper studies the robust fuzzy control for nonlinear chaotic system in the presence of parametric uncertainties. An uncertain Takagi-Sugeno (T-S) fuzzy model is employed for fuzzy modelling of an unknown chaotic system. A sufficient condition formulated in terms of linear matrix inequality (LMI) for the existence of fuzzy controller is obtained. Then the output feedback fuzzy-model-based regulator derived from the LMI solutions can guarantee the stability of the closed-loop overall fuzzy system. The T-S fuzzy model of the chaotic Chen system is developed as an example for illustration. The effectiveness of the proposed controller design methodology is finally demonstrated through computer simulations on the uncertain Chen chaotic system.展开更多
This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attaine...This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results.展开更多
The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters...The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake.展开更多
This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is ...This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.展开更多
In the 1930s and 1940s,Thomas Chao,an internationally-renowned Chinese journalist,influenced Chinese journalists’way of covering and writing news with his own prominent experience in international news reporting.Base...In the 1930s and 1940s,Thomas Chao,an internationally-renowned Chinese journalist,influenced Chinese journalists’way of covering and writing news with his own prominent experience in international news reporting.Based on his long-term news practice,Chao analyzed the differences between Chinese and Western press and explored the way for improvement.He called on the government to set up a national news agency so as to establish itself in the field of international communication,and helped the Central News Agency to take back Reuters’right to publish in China.Chao also actively promoted the exchange and cooperation between Chinese newspapers and news agencies and foreign press in international communication activities,striving to increase China’s voice worldwide.展开更多
文摘The qualitative solutions of dynamical system expressed with nonlinear differential equation can be divided into two categories. One is that the motion of phase point may approach infinite or stable equilibrium point eventually. Neither periodic excited source nor self-excited oscillation exists in such nonlinear dynamic circuits, so its solution cannot be treated as the synthesis of multiharmonic. And the other is that the endless vibration of phase point is limited within certain range, moreover possesses character of sustained oscillation, namely the bounded nonlinear oscillation. It can persistently and repeatedly vibration after dynamic variable entering into steady state;moreover the motion of phase point will not approach infinite at last;system has not stable equilibrium point. The motional trajectory can be described by a bounded space curve. So far, the curve cannot be represented by concretely explicit parametric form in math. It cannot be expressed analytically by human. The chaos is a most universally common form of bounded nonlinear oscillation. A number of chaotic systems, such as Lorenz equation, Chua’s circuit and lossless system in modern times are some examples among thousands of chaotic equations. In this work, basic properties related to the bounded space curve will be comprehensively summarized by analyzing these examples.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61672124,61370145,and 61173183)the Password Theory Project of the13th Five-Year Plan National Cryptography Development Fund,China(Grant No.MMJJ20170203)+1 种基金the Program for New Century Excellent Talents in Fujian Province Universitythe Natural Science Foundation of Fujian Province of China(Grant No.2018J01100)
文摘In this paper, first, we investigate a novel one-dimensional logistic-PWLCM(LP) modulation map which is derived from the logistic and PWLCM maps. Second, we propose a novel PCLML spatiotemporal chaos in pseudo-random coupling method that can accelerate the system behavior of the fully spatial chaos. Here, because the better chaotic properties include a wide range of parameter settings and better ergodicity than a logistic map, the LP is used in PCLML as f(x). The Kolmogorov–Sinai entropy density and universality and the bifurcation diagram are employed to investigate the chaotic behaviors of the proposed PCLML model. Finally, we apply the LP and PCLML chaotic systems to image encryption to improve the effectiveness and security of the encryption scheme. By combining self-generating matrix model M and dynamic substitution box(S-Box) methods, we design a new image encryption algorithm. Numerical simulations and security analysis have been carried out to demonstrate that the proposed algorithm has a high security level and can efficiently encrypt several different kinds of images into random-like images.
基金supported by the National Natural Science Foundation of China (Grant No.60973162)the Natural Science Foundation of Shandong Province,China (Grant No.ZR2009GM037)+4 种基金the Key Natural Science Foundation of Shandong Province,China (Grant No.Z2006G01)the Science and Technology Fund of Shandong Province,China (Grant No.2010GGX10132)the Scientific Research Foundation of Harbin Institute of Technology at Weihai,China (Grant No.HIT(WH)ZB200909)the Technology Research and Development Program of Weihai High-Technology Development Zone in Shandong Province,China (Grant No.201025)the Technology Research and Development Program of Weihai,China (Grant No.2008011)
文摘The wireless sensor network (WSN) has been widely used in various fields, but it still remains in the preliminary discovery and research phase with a lack of various related mature technologies. Traditional encryption schemes are not suitable for wireless sensor networks due to intrinsic features of the nodes such as low energy, limited computation capability, and lack of storage resources. In this paper, we present a novel block encryption scheme based on the integer discretization of a chaotic map, the Feistel network structure, and an S-box. The novel scheme is fast, secure, has low resource consumption and is suitable for wireless sensor network node encryption schemes. The experimental tests are carried out with detailed analysis, showing that the novel block algorithm has a large key space, very good diffusion and disruptive performances, a strict avalanche effect, excellent statistical balance, and fast encryption speed. These features enable the encryption scheme to pass the SP800-22 test. Meanwhile, the analysis and the testing of speed, time, and storage space on the simulator platform show that this new encryption scheme is well able to hide data information in wireless sensor networks.
文摘A novel framework for chaos and its impul-sive control in Chua's oscillator via time-delay feedback is presented.The exponential stability of impulsive control Chua's oscillator via time-delay feedback is considered,and some novel conditions are obtained.Then a novel impulsive controller design procedure is proposed.Simulation experiments are provided to demonstrate the feasibility and effectiveness of our method finally.
文摘We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N 〉 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words "winning" and "loosing" in the classical Parrondo's paradox with "order" and "chaos", respectively, the PS algorithm leads to the generalized Parrondo's paradox: chaos1 + chaos2 +..- + chaosN = order and order1 + order2 +.-. + orderN = chaos. Finally, the concept is well demon- strated with the results based on the fractional-order Chen system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60904101,60972164 and 60904046)the Fundamental Research Funds for the Central Universities (Grant No. N090404009)the Research Foundation of Education Bureau of Liaoning Province,China (Grant No. 2009A544)
文摘This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 60271019), the Doctorate Foundation of the Ministry of Education of China (Grant No 20020611007).
文摘This paper reports that an impulsive control theory for synchronization of nonlinear Rossler chaotic systems is developed. A new framework for impulsive synchronization between such chaotic systems is presented, which makes the synchronization error system a linear impulsive control system. Therefore, it is easy to derive the impulsive synchronizution law. The proposed impulsive control scheme is illustrated by nonlinear Rossler chaotic systems and the simulation results demonstrate the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60375001), the Hunan Province Natural Science Foundation, China (Grant No 03JJY3107) and the Scientific Research Funds of Hunan Provincial Education Department, China (Grant No 05B016).
文摘This paper studies the robust fuzzy control for nonlinear chaotic system in the presence of parametric uncertainties. An uncertain Takagi-Sugeno (T-S) fuzzy model is employed for fuzzy modelling of an unknown chaotic system. A sufficient condition formulated in terms of linear matrix inequality (LMI) for the existence of fuzzy controller is obtained. Then the output feedback fuzzy-model-based regulator derived from the LMI solutions can guarantee the stability of the closed-loop overall fuzzy system. The T-S fuzzy model of the chaotic Chen system is developed as an example for illustration. The effectiveness of the proposed controller design methodology is finally demonstrated through computer simulations on the uncertain Chen chaotic system.
基金Project partially supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No. 101005)the National Natural Science Foundation of China (Grant No. 60904004)the Key Youth Science and Technology Foundation of University of Electronic Science and Technology of China (Grant No. L08010201JX0720)
文摘This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results.
基金sponsored by the National Natural Science Foundation of China(61333002)Open Research Foundation of the State Key Laboratory of Geodesy and Earth’s Dynamics(SKLGED2018-5-4-E)+5 种基金Foundation of the Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems(ACIA2017002)111 projects under Grant(B17040)Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing(KLIGIP-2017A02)supported by the Three Gorges Research Center for geo-hazardMinistry of Education cooperation agreements of Krasnoyarsk Science Center and Technology BureauRussian Academy of Sciences。
文摘The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake.
文摘This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.
文摘In the 1930s and 1940s,Thomas Chao,an internationally-renowned Chinese journalist,influenced Chinese journalists’way of covering and writing news with his own prominent experience in international news reporting.Based on his long-term news practice,Chao analyzed the differences between Chinese and Western press and explored the way for improvement.He called on the government to set up a national news agency so as to establish itself in the field of international communication,and helped the Central News Agency to take back Reuters’right to publish in China.Chao also actively promoted the exchange and cooperation between Chinese newspapers and news agencies and foreign press in international communication activities,striving to increase China’s voice worldwide.