期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatial Modeling and Mapping of Tuberculosis Using Bayesian Hierarchical Approaches 被引量:1
1
作者 Abdul-Karim Iddrisu Yaw Ampem Amoako 《Open Journal of Statistics》 2016年第3期482-513,共32页
Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and poli... Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and policy making. However, data are subject to complexities by heterogeneity across host classes. The use of frequentist methods in biostatistics and epidemiology is common and is therefore extensively utilized in answering varied research questions. In this paper, we applied the hierarchical Bayesian approach to study the spatial distribution of tuberculosis in Kenya. The focus was to identify best fitting model for modeling TB relative risk in Kenya. The Markov Chain Monte Carlo (MCMC) method via WinBUGS and R packages was used for simulations. The Deviance Information Criterion (DIC) proposed by [1] was used for models comparison and selection. Among the models considered, unstructured heterogeneity model perfumes better in terms of modeling and mapping TB RR in Kenya. Variation in TB risk is observed among Kenya counties and clustering among counties with high TB Relative Risk (RR). HIV prevalence is identified as the dominant determinant of TB. We find clustering and heterogeneity of risk among high rate counties. Although the approaches are less than ideal, we hope that our formulations provide a useful stepping stone in the development of spatial methodology for the statistical analysis of risk from TB in Kenya. 展开更多
关键词 Bayesian Hierarchical HETEROGENEITY deviance information criterion (DIC) Markov Chain Monte Carlo (MCMC) Host Classes Relative Risk
下载PDF
Stochastic Volatility Modeling based on Doubly Truncated Cauchy Distribution and Bayesian Estimation for Chinese Stock Market
2
作者 Cai-feng WANG Cong XIE +1 位作者 Zi-yu MA Hui-min ZHAO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2023年第4期791-807,共17页
In order to measure the uncertainty of financial asset returns in the stock market, this paper presents a new model, called SV-dt C model, a stochastic volatility(SV) model assuming that the stock return has a doubly ... In order to measure the uncertainty of financial asset returns in the stock market, this paper presents a new model, called SV-dt C model, a stochastic volatility(SV) model assuming that the stock return has a doubly truncated Cauchy distribution, which takes into account the high peak and fat tail of the empirical distribution simultaneously. Under the Bayesian framework, a prior and posterior analysis for the parameters is made and Markov Chain Monte Carlo(MCMC) is used for computing the posterior estimates of the model parameters and forecasting in the empirical application of Shanghai Stock Exchange Composite Index(SSECI) with respect to the proposed SV-dt C model and two classic SV-N(SV model with Normal distribution)and SV-T(SV model with Student-t distribution) models. The empirical analysis shows that the proposed SV-dt C model has better performance by model checking, including independence test(Projection correlation test), Kolmogorov-Smirnov test(K-S test) and Q-Q plot. Additionally, deviance information criterion(DIC) also shows that the proposed model has a significant improvement in model fit over the others. 展开更多
关键词 stochastic volatility model doubly truncated Cauchy distribution Bayesian estimation Markov Chain Monte Carlo method deviance information criterion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部