The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer so- lution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sand...The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer so- lution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sandstone reservoirs in EOR projects. To alleviate the matching problems between the layer permeability and the injected polymer molecular weight, a molecular weight adjusting device with porous medium was designed on the basis of mechanical degradation principle. In terms of four variables (polymer concentration, pore diameter, length of shear component and flow rate ), the theological behavior of hydrolyzed polyacrylamide (HPAM) solu- tion flowing through the device was investigated in detail. The change of these variables is able to control the shear rate of HPAM solutions through ceramic foam, and achieve the desired degree of shear degradation and the final theological parameters-viscosity loss, viscoelasticity and pressure drop. Therefore, a linear relationship between viscosity loss and shearing rate was established so as to obtain the targeted viscosity easily. Field tests in the Daqing Oil Field showed that the polymer molecular weight could drop 20% to 50%. In a word, the results could guide the industrial application of the novel device and the further study of polymer degradation flowing through the porous medium.展开更多
In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed...In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed electric multiple unit(EMU)gearbox.The moving particle semi-implicit(MPS)method is used to numerically simulate the internal flow field of the gearbox of the high-speed EMU under working conditions.The effects of the velocity of the high-speed EMU,the immersion depth,and the oil sump temperature on the power loss of the gears and the lubricant quantity of each bearing are studied and provide an effective tool for the quantitative evaluation of the lubrication characteristics of the gearbox.The lubrication characteristics of the gearbox under different working conditions are studied when the oil volume adjusting device is closed and opened.The results show that the oil volume adjusting device mainly changes the amount of lubricant stirred by the output gear by changing the flow rate of lubricant from the cavity pinion(Cavity P)to the cavity gear(Cavity G),and thus affects the power loss of gears and the lubricant quantity of each bearing.展开更多
基金Supported by the Program for Yangtse River Scholars and Innovative Research Terms in Universities(IRT0936)the National Basic Research Program of China(2009CB219905+2 种基金2009CB219907)the Daqing Oilfield Co.Ltd
文摘The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer so- lution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sandstone reservoirs in EOR projects. To alleviate the matching problems between the layer permeability and the injected polymer molecular weight, a molecular weight adjusting device with porous medium was designed on the basis of mechanical degradation principle. In terms of four variables (polymer concentration, pore diameter, length of shear component and flow rate ), the theological behavior of hydrolyzed polyacrylamide (HPAM) solu- tion flowing through the device was investigated in detail. The change of these variables is able to control the shear rate of HPAM solutions through ceramic foam, and achieve the desired degree of shear degradation and the final theological parameters-viscosity loss, viscoelasticity and pressure drop. Therefore, a linear relationship between viscosity loss and shearing rate was established so as to obtain the targeted viscosity easily. Field tests in the Daqing Oil Field showed that the polymer molecular weight could drop 20% to 50%. In a word, the results could guide the industrial application of the novel device and the further study of polymer degradation flowing through the porous medium.
基金supported by the Natural Science Foundation of Sichuan Province,China(Nos.2022NSFSC0034 and 2022NSFSC1901)the National Railway Group Science and Technology Program(No.N2021J028)+1 种基金the Independent Research and Development Projects of State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration(No.R111720H01385)the Independent Research and Development Projects of State Key Laboratory of Traction Power(No.2022TPL-T02),China。
文摘In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed electric multiple unit(EMU)gearbox.The moving particle semi-implicit(MPS)method is used to numerically simulate the internal flow field of the gearbox of the high-speed EMU under working conditions.The effects of the velocity of the high-speed EMU,the immersion depth,and the oil sump temperature on the power loss of the gears and the lubricant quantity of each bearing are studied and provide an effective tool for the quantitative evaluation of the lubrication characteristics of the gearbox.The lubrication characteristics of the gearbox under different working conditions are studied when the oil volume adjusting device is closed and opened.The results show that the oil volume adjusting device mainly changes the amount of lubricant stirred by the output gear by changing the flow rate of lubricant from the cavity pinion(Cavity P)to the cavity gear(Cavity G),and thus affects the power loss of gears and the lubricant quantity of each bearing.