期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Machine Learning Ensemble for Analyzing Internet of Things Networks:Botnet Detection and Device Identification
1
作者 Seung-Ju Han Seong-Su Yoon Ieck-Chae Euom 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1495-1518,共24页
The rapid proliferation of Internet of Things(IoT)technology has facilitated automation across various sectors.Nevertheless,this advancement has also resulted in a notable surge in cyberattacks,notably botnets.As a re... The rapid proliferation of Internet of Things(IoT)technology has facilitated automation across various sectors.Nevertheless,this advancement has also resulted in a notable surge in cyberattacks,notably botnets.As a result,research on network analysis has become vital.Machine learning-based techniques for network analysis provide a more extensive and adaptable approach in comparison to traditional rule-based methods.In this paper,we propose a framework for analyzing communications between IoT devices using supervised learning and ensemble techniques and present experimental results that validate the efficacy of the proposed framework.The results indicate that using the proposed ensemble techniques improves accuracy by up to 1.7%compared to singlealgorithm approaches.These results also suggest that the proposed framework can flexibly adapt to general IoT network analysis scenarios.Unlike existing frameworks,which only exhibit high performance in specific situations,the proposed framework can serve as a fundamental approach for addressing a wide range of issues. 展开更多
关键词 Internet of Things machine learning traffic analysis botnet detection device identification
下载PDF
An accurate identification method for network devices based on spatial attention mechanism 被引量:1
2
作者 Xiuting Wang Ruixiang Li +1 位作者 Shaoyong Du Xiangyang Luo 《Security and Safety》 2023年第2期13-29,共17页
With the metaverse being the development direction of the next generation Internet,the popularity of intelligent devices,and the maturity of various emerging technologies,more and more intelligent devices try to conne... With the metaverse being the development direction of the next generation Internet,the popularity of intelligent devices,and the maturity of various emerging technologies,more and more intelligent devices try to connect to the Internet,which poses a major threat to the management and security protection of network equipment.At present,the mainstream method of network equipment identification in the metaverse is to obtain the network traffic data generated in the process of device communication,extract the device features through analysis and processing,and identify the device based on a variety of learning algorithms.Such methods often require manual participation,and it is difficult to capture the small differences between similar devices,leading to identification errors.Therefore,we propose a deep learning device recognition method based on a spatial attention mechanism.Firstly,we extract the required feature fields from the acquired network traffic data.Then,we normalize the data and convert it into grayscale images.After that,we add a spatial attention mechanism to CNN and MLP respectively to increase the difference between similar network devices and further improve the recognition accuracy.Finally,we identify devices based on the deep learning model.A large number of experiments were carried out on 31 types of network devices such as web cameras,wireless routers,and smartwatches.The results show that the accuracy of the proposed recognition method based on the spatial attention mechanism is increased by 0.8%and 2.0%,respectively,compared with the recognition method based only on the deep learning model under the CNN and MLP models.The method proposed in this paper is significantly superior to the existing method of device-type recognition based only on a deep learning model. 展开更多
关键词 Metaverse device identification Deep learning Spatial attention
原文传递
RFID Based e-quality Tracking in Service-oriented Manufacturing Execution System 被引量:7
3
作者 FU Yingbin JIANG Pingyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期974-981,共8页
The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-ME... The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-MES), real-time e-quality tracking (e-QT), in which real-time data are computed, has played more and more important roles in manufacturing. This paper presents an e-QT model through the study of real-time status data tracking and quality data collecting. An implementing architecture of the e-QT model is constructed on the basis of radio frequency identification devices (RFID) data-tracking network. In order to develop the e-QT system, some key enabling technologies, such as configuration, data collection, and data processing, etc, are studied. The relation schema between hardware is built for the RFID data-tracking network based on the configuration technique. Real-time data are sampled by using data collecting technique. Furthermore, real-time status and quality data in a shop-floor can be acquired in terms of using the real-time data computing method. Finally, a prototype system is developed and a running example is given so as to verify the feasibility of methods proposed in this paper. The proposed research provides effective e-quality tracking theoretical foundation through the use of RFID technology for the discrete manufacturing. 展开更多
关键词 real-time tracking data collection radio frequency identification devices
下载PDF
Power Grid Fault Diagnosis Based on Deep Pyramid Convolutional Neural Network
4
作者 Xu Zhang Huiting Zhang +4 位作者 Dongying Zhang Yixian Wang Ruiting Ding Yuchuan Zheng Yongxu Zhang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第6期2188-2203,共16页
Existing power grid fault diagnosis methods relyon manual experience to design diagnosis models, lack theability to extract fault knowledge, and are difficult to adaptto complex and changeable engineering sites. Consi... Existing power grid fault diagnosis methods relyon manual experience to design diagnosis models, lack theability to extract fault knowledge, and are difficult to adaptto complex and changeable engineering sites. Considering thissituation, this paper proposes a power grid fault diagnosismethod based on a deep pyramid convolutional neural networkfor the alarm information set. This approach uses the deepfeature extraction ability of the network to extract fault featureknowledge from alarm information texts and achieve end-to-endfault classification and fault device identification. First, a deeppyramid convolutional neural network model for extracting theoverall characteristics of fault events is constructed to identifyfault types. Second, a deep pyramidal convolutional neuralnetwork model for alarm information text is constructed, thetext description characteristics associated with alarm informationtexts are extracted, the key information corresponding to faultsin the alarm information set is identified, and suspicious faultydevices are selected. Then, a fault device identification strategythat integrates fault-type and time sequence priorities is proposedto identify faulty devices. Finally, the actual fault cases and thefault cases generated by the simulation are studied, and theresults verify the effectiveness and practicability of the methodpresented in this paper. 展开更多
关键词 Alarm information deep pyramid convolutional neural network fault classification fault device identification feature extraction key information
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部