Phase behavior and micellization of dextran-graft-poly (N-isopropylacrylamide) (PNIPAAm) polymers in aqueous solution are investigated in this paper using DSC and AFM methods. It is found that with the increase of gr...Phase behavior and micellization of dextran-graft-poly (N-isopropylacrylamide) (PNIPAAm) polymers in aqueous solution are investigated in this paper using DSC and AFM methods. It is found that with the increase of grafting (G%) of the copolymers the endothermic enthalpy during the phase transition increases significantly and the transition temperature decreases slightly. The phase transition behavior of the copolymers is scanning rate dependent. Micelles are formed whenever the solution temperature is raised above the LCST of the copolymers. It is proposed that by using this thermal responsive property of the copolymers, drugs could be incorporated into the micelles without employing any organic solvent.展开更多
The novel amphiphilic acylated dextran-g-polyisobutylene(AcyDex-g-PIB)graft copolymers with different branch lengths(A4nPtB,2600-5800 g/mol)and grafti ng numbers(GN,5-28 per 1000 Dex mono saccharide)were successfully ...The novel amphiphilic acylated dextran-g-polyisobutylene(AcyDex-g-PIB)graft copolymers with different branch lengths(A4nPtB,2600-5800 g/mol)and grafti ng numbers(GN,5-28 per 1000 Dex mono saccharide)were successfully synthesized via the nu cleophilic substitution of the hydroxyl(-OH)side groups along AcyDex backb one by the living PIB-THF4+chai ns prepared through cati onic polymerizatio n.The crystallizati on of AcyDex backb one in AcyDex-g-PIB graft copolymers was con fined due to the prese nee of PIB branches and the morphology changed from short rod-like crystals to fragment-like crystals with increasing Mn P|B and GN.The obvious microphase separation occurred due to the incompatibility between hard AcyDex backbone and soft PIB branches.AcyDex-g-PIB graft copolymers exhibit excellent biocompatibility towards HeLa cells and good hemocompatibility with red blood cells(RBCs),both of which increase with increasing GN.The in creases of water con tact angle and roughness on the surface of the graft copolymers with in creasi ng A4nP|B and GN manifest the anti-protein adsorption performance.The amphiphilic AcyDex-g-PIB graft copolymers could self-assemble in aqueous solution into nanospheres,which can be used as pH-sensitive drug carriers and can release 100%of the loaded drug within 72 h at pH=7.4.AcyDex-g-PIB graft copolymers bearing silver nanoparticles(Ag-NPs,0.8 wt%-3.9 wt%,4.5-9.5 nm)show good antibacterial properties.This kind of amphiphilic graft copolymer would have a promising prospect in biological and medical fields.展开更多
A novel dualfunctional monomer, 2-(2',2',6',6'-tetramethyl-piperidinyl-1'-oxy)methylbenzene-1,4-dioyl chloride hydrochloride, with two acid chloride groups for step-growth polymerization and a nitroxide group f...A novel dualfunctional monomer, 2-(2',2',6',6'-tetramethyl-piperidinyl-1'-oxy)methylbenzene-1,4-dioyl chloride hydrochloride, with two acid chloride groups for step-growth polymerization and a nitroxide group for the mediation of living radical polymerization was synthesized. It was first copolymerized with terephthaloyl chloride and p- phenylenediamine at a feed molar ratio of 1:3:4 in N-methyl-2-pyrrolidone containing 10 wt% calcium chloride at -10℃ to yield a poly(p-phenylene terephthalamide) based macroinitiator, which initiated radical polymerization of styrene at 125℃ to obtain a series of poly(p-phenylene terephthalamide)-g-polystyrenes. A combinatory analysis of proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, elementary analysis, thermogravimetry and gel permeation chromatography indicated that the macroinitiator induced the radical polymerization of styrene to proceed in a well- controlled way. The molecular weight of side-chains increased with an increase of monomer conversion, and the molecular weight distribution index remained lower than 1.5. The graft copolymers showed a remarkably improved solubility in N- methyl-2-pyrrolidone and much depressed crystallinity in bulk.展开更多
This paper reported the research results concerning the surface characterization ofpolystyrene-graft-w-stearyl poly(ethylene oxide) (PS-g-SPEO) by means of XPS,contactangle measurement and TEM, and its in vitro blood ...This paper reported the research results concerning the surface characterization ofpolystyrene-graft-w-stearyl poly(ethylene oxide) (PS-g-SPEO) by means of XPS,contactangle measurement and TEM, and its in vitro blood compatibility assessment by measuringthe plasma recalcification time (RT) and partial thromboplastin time (PTT). The XPSresults demonstrated that the surface and bulk composition of the PS-g-SPEO graftcopolymers differ remarkably from each other,and that SPEO component was constantlyenriched at the copolymer/air interface. Contact angle studies indicated that the surfacewater wettability can be adjusted effectively by changing the composition of the copolymer.PS-g-SPEO graft copolymers can undergo microphase separation as clearly illustrated byTEM photographs. The relationship between the surface properties of PS-g-SPEO graftcopolymer and its blood compatibility was also discussed.展开更多
Amphiphilic fluorosiloxane graft copolymers with a poly(dimethylsiloxane) (PDMS) backbone, a hydrophobic fluorosiloxane side-chain and three hydrophilic polyether side-chains were synthesized by hydrosilation reac...Amphiphilic fluorosiloxane graft copolymers with a poly(dimethylsiloxane) (PDMS) backbone, a hydrophobic fluorosiloxane side-chain and three hydrophilic polyether side-chains were synthesized by hydrosilation reaction in this work. The micellization of amphiphilic graft copolymers in the water/ethanol solvent system was investigated, and vesicles with different size were formed after the self-assembly system was aged for different time.展开更多
The synergistic effect of phenolic and thio antioxidants on the stabilization of acrylonitrile-butadienestyrene(ABS)graft copolymers has been studied.Three commercial antioxidants Irganox245,Irganox1076 and dilauryl t...The synergistic effect of phenolic and thio antioxidants on the stabilization of acrylonitrile-butadienestyrene(ABS)graft copolymers has been studied.Three commercial antioxidants Irganox245,Irganox1076 and dilauryl thiodipropionate(DLTP)were selected.Formulations based on hindered phenols and secondary antioxidant DLTP were prepared.Stabilization was monitored in terms of changes in the functional groups(oxidation products),tensile properties and yellowness index.Differential scanning calorimetry(DSC)and thermogravimetry(TG)were also used to assess the stability.The results indicated that the combination of Irganox245 and DLTP showed much better stabilization effect than the individual components due to the strong synergistic effect.Only weak synergism could be observed in the formulation that contained Irganox1076 and DLTP.Irganox1076 and Irgnox1076/DLTP exhibited similar behaviors between antioxidants with the highest and lowest efficiencies.展开更多
Amphiphilic graft copolymers consisting of poly(vinyl chloride)(PVC) main chains and poly(4-vinyl pyridine)(P4VP) side chains were synthesized via atom transfer radical polymerization(ATRP) using direct init...Amphiphilic graft copolymers consisting of poly(vinyl chloride)(PVC) main chains and poly(4-vinyl pyridine)(P4VP) side chains were synthesized via atom transfer radical polymerization(ATRP) using direct initiation of chlorine atoms. The successful synthesis of PVC-g-P4 VP graft copolymers was confirmed by Fourier transform infrared spectroscopy(FTIR) and proton nuclear magnetic resonance(1H-NMR). Transmission electron microscope(TEM) and small angle X-ray scattering(SAXS) analysis showed that PVC-g-P4 VP exhibited microphase-separated, ordered structure with 37.6 nm of domain spacing, which was not observed in neat PVC. For antibacterial applications, the tertiary nitrogen atoms of PVC-gP4 VP was quaternized using 1-bromohexane, as confirmed by FTIR measurements. Bacteria including Escherichia coli(E. coli), Staphylococcus aureus(S. aureus), Bacillus cereus(B. cereus), and Pseudomonas aeruginosa(P. aeruginosa) were completely killed in 24 h on the quaternized PVC-g-P4VP(46% grafting) surface, indicating its excellent antibacterial behavior while it showed to be cytotoxic to mammalian cell.展开更多
Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene (PP-g-PS) and polypropylene-g- poly(n-butyl acrylate) (PP-g-PnBA) graft copolymers with well-defined molecular structures were s...Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene (PP-g-PS) and polypropylene-g- poly(n-butyl acrylate) (PP-g-PnBA) graft copolymers with well-defined molecular structures were systematically investigated by DSC. The Avrami equation was used to analyze the isothermal crystallization process, while the analysis of nonisothermal crystallization process was based on the Jeziorny-modified Avrami model and Mo model. The kinetics results of isothermal and nonisothermal crystallization verified the peculiar effects of branches on the crystallization process of PP backbones in PP-g-PS and PP-g-PnBA graft copolymers: on one hand, the interaction between branches (n-n interaction between PS branches, or dipole-dipole interaction between PnBA branches) restrained the mobility and reptation ability of the PP backbones, which hindered the crystallization process; on the other hand, the heterogeneous nucleation effect resulting from the branched structure and fluctuation-assisted nucleation mechanism (caused by microphase separation between the PS or PnBA rich phase and the PP rich phase) became more pronounced with increasing branch length, which facilitated the crystallization process.展开更多
The novel amphiphilic graft copolymers with hydrophilic hard polar hydroxypropyl cellulose(HPC)backbone and hydrophobic soft nonpolar polyisobutylene(PIB)branches have been successfully synthesized through nucleophili...The novel amphiphilic graft copolymers with hydrophilic hard polar hydroxypropyl cellulose(HPC)backbone and hydrophobic soft nonpolar polyisobutylene(PIB)branches have been successfully synthesized through nucleophilic substitution reaction of living PIB chains carrying oxonium ions with the-OH groups along HPC backbone.The PIB branch length in the graft copolymers could be designed by living cationic polymerization and the grafting density could be adjusted by PIB+/-OH molar ratio.The living PIB chains carrying oxonium ion were prepared by transformation of allyl bromide end groups in the presence of AgCI0_(4) and silver nanoparticles(3.2±0.3 nm,0.7 wt%-1.8 wt%)generated in situ from AgBr.The phase-separation morphology was formed in the graft copolymers due to their incompatibility between backbone and branches.The hydrophilicity on the surface of graft copolymer films could be turned to hydrophobicity by increasing grafting density or/and length of PIB branches.The soft PIB segments in graft copolymers provided an unique surface wa self-assembly for ant卜protein adsorption against bovine serum albumin.A small amount of Ag nanoparticles in the copolymers contributed to good antibacterial activities against Staphylococcus aureus or Escherichia coli.展开更多
A couple of novel sulfobetaine copolymer is developed via Michael-type addition reaction. The comonomers, diamines and maleimide react via Michael reaction through UV irradiation using AIBN as photoinitiator producing...A couple of novel sulfobetaine copolymer is developed via Michael-type addition reaction. The comonomers, diamines and maleimide react via Michael reaction through UV irradiation using AIBN as photoinitiator producing polyamine chain. Further, sulfobetaine copolymers were obtained on treatment of the polyamine with sulfopropylating agent, 1,3-propane sultone. These novel sulfobetaine polymers were grafted on silica surface to produce responsive biocompatible surface. This easy straightforward, catalyst free facile protocol for synthesis of polymer grafted surface is useful for developing biomedical devices. Additionally, both the copolymers show fluorescence characteristics.展开更多
Hydrophilic degraded gelatin was modified with hydrophobic poly(ε-caprolactone) (PCL) via a chemical grafting route.Firstly,PCL with one hydroxyl end group was prepared by the ring-opening polymerization of εcaprola...Hydrophilic degraded gelatin was modified with hydrophobic poly(ε-caprolactone) (PCL) via a chemical grafting route.Firstly,PCL with one hydroxyl end group was prepared by the ring-opening polymerization of εcaprolactone (ε-CL) with tin (Ⅱ) 2-ethylhexanoate as catalyst and n-butyl alcohol as initiator.Secondly,the PCL reacted with isophorone diisocyanate (IPDI) to prepare PCL with isocyanate functional group (PCL-NCO).Hydroxylamine was used to degrade gelatin by the cleavage between asparagine and glycine residues of gelatin.PCL-NCO reacted with the hydroxyl/amino groups of degraded gelatin in a homogeneous system and yielded the PCL modified gelatin copolymers.The gelatin grafted PCL copolymers were measured by means of XRD,FTIR,DSC and 1 H NMR.The results confirmed the conjugation of PCL onto gelatin chains.The PCL modified gelatin can be used as biomaterials owing to their biocompatibility and biodegradation.展开更多
Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanome- ters, making them ideal materials for various applications. These applications directly depend on the...Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanome- ters, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applica- tions; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB dibloek eopolymers, junction p0int-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress.展开更多
Dynamic mechanical behaviours of PVC ho-mopolymer. poly butylacryiate (PBA ) graft vinylchloride copolymers and blend of PVC and ACR have been investigated. The results reveal that there is semicompatible nature in th...Dynamic mechanical behaviours of PVC ho-mopolymer. poly butylacryiate (PBA ) graft vinylchloride copolymers and blend of PVC and ACR have been investigated. The results reveal that there is semicompatible nature in the two phases in these materials,that the compatibility of the two phases decrease, -with the increase of crosslinking density of PBA backbone in graft copolyers. For different copolymer types-PB A graft copolymers had better compatibility of the two phases compared ivith the graft copolymers 晈ith core/shell backbone poly-展开更多
Ethyl cellulose graft copolymers with block and hetero side chains, ethyl cellulose graft [polystyrene-b-poly- (ethylene glycol)] [EC-g-(PS-b-PEG)] and ethyl cellulose graft polystyrene and polyethylene glycol [EC...Ethyl cellulose graft copolymers with block and hetero side chains, ethyl cellulose graft [polystyrene-b-poly- (ethylene glycol)] [EC-g-(PS-b-PEG)] and ethyl cellulose graft polystyrene and polyethylene glycol [EC-g-(PS-PEG )] were synthesized by atomic transfer radical polymerization (ATRP) and alkyne-azide "click" reactions and "one-pot" ATRP and "click" reactions, respectively. For the synthesis of EC-g-(PS-b-PEG), the macroinitiator for ATRP was first synthesized via the esterification of hydroxyl groups of EC with 2-bromoisobutyryl bromide to re- sult ethyl cellulose 2-bromoisobutyryl ester (EC-Br). The degree of substitution of bromide groups, which deter- mined the graft density, can be tailored by varying the feeding ratios of the hydroxyl groups to 2-bromoisobutyryl bromide. Then ATRP was carried out for preparing EC-g-PS-Br with well-defined length of PS chains. The EC-g-PS-Br copolymers were then converted to EC-g-PS-N3 and then reacted with end alkyne-functionalized PEG via click to result in EC-g-(PS-b-PEG). The EC-g-(PS-PEG) copolymers were synthesized by converting bromide groups of EC-Br to azide groups (EC-Br-N3) and then by one-pot ATRP and "click" reactions. The resultant graft copolymers were characterized by FTIR and IH NMR. The results indicate the success of the synthetic procedure of the cellulose grail copolymers with block and hetero side chains.展开更多
基金This project is financially supported by the National Natural Science Foundation of China (Grant No. 50173022) and the Natural Science Foundation of Zhejiang Province (Grant No. 500048).
文摘Phase behavior and micellization of dextran-graft-poly (N-isopropylacrylamide) (PNIPAAm) polymers in aqueous solution are investigated in this paper using DSC and AFM methods. It is found that with the increase of grafting (G%) of the copolymers the endothermic enthalpy during the phase transition increases significantly and the transition temperature decreases slightly. The phase transition behavior of the copolymers is scanning rate dependent. Micelles are formed whenever the solution temperature is raised above the LCST of the copolymers. It is proposed that by using this thermal responsive property of the copolymers, drugs could be incorporated into the micelles without employing any organic solvent.
基金by the National Natural Science Foundation of China(Nos.51521062 and 21574007).
文摘The novel amphiphilic acylated dextran-g-polyisobutylene(AcyDex-g-PIB)graft copolymers with different branch lengths(A4nPtB,2600-5800 g/mol)and grafti ng numbers(GN,5-28 per 1000 Dex mono saccharide)were successfully synthesized via the nu cleophilic substitution of the hydroxyl(-OH)side groups along AcyDex backb one by the living PIB-THF4+chai ns prepared through cati onic polymerizatio n.The crystallizati on of AcyDex backb one in AcyDex-g-PIB graft copolymers was con fined due to the prese nee of PIB branches and the morphology changed from short rod-like crystals to fragment-like crystals with increasing Mn P|B and GN.The obvious microphase separation occurred due to the incompatibility between hard AcyDex backbone and soft PIB branches.AcyDex-g-PIB graft copolymers exhibit excellent biocompatibility towards HeLa cells and good hemocompatibility with red blood cells(RBCs),both of which increase with increasing GN.The in creases of water con tact angle and roughness on the surface of the graft copolymers with in creasi ng A4nP|B and GN manifest the anti-protein adsorption performance.The amphiphilic AcyDex-g-PIB graft copolymers could self-assemble in aqueous solution into nanospheres,which can be used as pH-sensitive drug carriers and can release 100%of the loaded drug within 72 h at pH=7.4.AcyDex-g-PIB graft copolymers bearing silver nanoparticles(Ag-NPs,0.8 wt%-3.9 wt%,4.5-9.5 nm)show good antibacterial properties.This kind of amphiphilic graft copolymer would have a promising prospect in biological and medical fields.
基金supported by the National Natural Science Foundation of China(No.20774001)the National Science Fund for Distinguished Young Scholars(No.20325415)
文摘A novel dualfunctional monomer, 2-(2',2',6',6'-tetramethyl-piperidinyl-1'-oxy)methylbenzene-1,4-dioyl chloride hydrochloride, with two acid chloride groups for step-growth polymerization and a nitroxide group for the mediation of living radical polymerization was synthesized. It was first copolymerized with terephthaloyl chloride and p- phenylenediamine at a feed molar ratio of 1:3:4 in N-methyl-2-pyrrolidone containing 10 wt% calcium chloride at -10℃ to yield a poly(p-phenylene terephthalamide) based macroinitiator, which initiated radical polymerization of styrene at 125℃ to obtain a series of poly(p-phenylene terephthalamide)-g-polystyrenes. A combinatory analysis of proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, elementary analysis, thermogravimetry and gel permeation chromatography indicated that the macroinitiator induced the radical polymerization of styrene to proceed in a well- controlled way. The molecular weight of side-chains increased with an increase of monomer conversion, and the molecular weight distribution index remained lower than 1.5. The graft copolymers showed a remarkably improved solubility in N- methyl-2-pyrrolidone and much depressed crystallinity in bulk.
基金This work was supported by the National Natural Science Foundation of China and the State Education Committee of China.
文摘This paper reported the research results concerning the surface characterization ofpolystyrene-graft-w-stearyl poly(ethylene oxide) (PS-g-SPEO) by means of XPS,contactangle measurement and TEM, and its in vitro blood compatibility assessment by measuringthe plasma recalcification time (RT) and partial thromboplastin time (PTT). The XPSresults demonstrated that the surface and bulk composition of the PS-g-SPEO graftcopolymers differ remarkably from each other,and that SPEO component was constantlyenriched at the copolymer/air interface. Contact angle studies indicated that the surfacewater wettability can be adjusted effectively by changing the composition of the copolymer.PS-g-SPEO graft copolymers can undergo microphase separation as clearly illustrated byTEM photographs. The relationship between the surface properties of PS-g-SPEO graftcopolymer and its blood compatibility was also discussed.
基金supported by National Natural Science Foundation of China(No.20606029)Natural Science Foundation of Zhejiang Province(No.Y4090579)Science Foundation of Zhejiang Sci-Tech University (ZSTU)(No.0701652-Y)
文摘Amphiphilic fluorosiloxane graft copolymers with a poly(dimethylsiloxane) (PDMS) backbone, a hydrophobic fluorosiloxane side-chain and three hydrophilic polyether side-chains were synthesized by hydrosilation reaction in this work. The micellization of amphiphilic graft copolymers in the water/ethanol solvent system was investigated, and vesicles with different size were formed after the self-assembly system was aged for different time.
基金The financial supports of the Jilin Provincial Science and Technology Department(200505252)were gratefully acknowledged.
文摘The synergistic effect of phenolic and thio antioxidants on the stabilization of acrylonitrile-butadienestyrene(ABS)graft copolymers has been studied.Three commercial antioxidants Irganox245,Irganox1076 and dilauryl thiodipropionate(DLTP)were selected.Formulations based on hindered phenols and secondary antioxidant DLTP were prepared.Stabilization was monitored in terms of changes in the functional groups(oxidation products),tensile properties and yellowness index.Differential scanning calorimetry(DSC)and thermogravimetry(TG)were also used to assess the stability.The results indicated that the combination of Irganox245 and DLTP showed much better stabilization effect than the individual components due to the strong synergistic effect.Only weak synergism could be observed in the formulation that contained Irganox1076 and DLTP.Irganox1076 and Irgnox1076/DLTP exhibited similar behaviors between antioxidants with the highest and lowest efficiencies.
基金financially supported by a National Research Foundation(NRF)grant funded by the Korean government(MEST)through the Core Research Program(2012R1A2A2A02011268)Agriculture Research Center program of Ministry for Food,Agriculture,Forestry,and Fisheries(IPET 112051-3)the Korea CCS R&D Center and the Energy Efficiency&Resources of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Ministry of Knowledge Economy(20122010100040)
文摘Amphiphilic graft copolymers consisting of poly(vinyl chloride)(PVC) main chains and poly(4-vinyl pyridine)(P4VP) side chains were synthesized via atom transfer radical polymerization(ATRP) using direct initiation of chlorine atoms. The successful synthesis of PVC-g-P4 VP graft copolymers was confirmed by Fourier transform infrared spectroscopy(FTIR) and proton nuclear magnetic resonance(1H-NMR). Transmission electron microscope(TEM) and small angle X-ray scattering(SAXS) analysis showed that PVC-g-P4 VP exhibited microphase-separated, ordered structure with 37.6 nm of domain spacing, which was not observed in neat PVC. For antibacterial applications, the tertiary nitrogen atoms of PVC-gP4 VP was quaternized using 1-bromohexane, as confirmed by FTIR measurements. Bacteria including Escherichia coli(E. coli), Staphylococcus aureus(S. aureus), Bacillus cereus(B. cereus), and Pseudomonas aeruginosa(P. aeruginosa) were completely killed in 24 h on the quaternized PVC-g-P4VP(46% grafting) surface, indicating its excellent antibacterial behavior while it showed to be cytotoxic to mammalian cell.
基金financially supported by the National Natural Science Foundation of China for the projects(Nos.51233005 and 51073149)
文摘Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene (PP-g-PS) and polypropylene-g- poly(n-butyl acrylate) (PP-g-PnBA) graft copolymers with well-defined molecular structures were systematically investigated by DSC. The Avrami equation was used to analyze the isothermal crystallization process, while the analysis of nonisothermal crystallization process was based on the Jeziorny-modified Avrami model and Mo model. The kinetics results of isothermal and nonisothermal crystallization verified the peculiar effects of branches on the crystallization process of PP backbones in PP-g-PS and PP-g-PnBA graft copolymers: on one hand, the interaction between branches (n-n interaction between PS branches, or dipole-dipole interaction between PnBA branches) restrained the mobility and reptation ability of the PP backbones, which hindered the crystallization process; on the other hand, the heterogeneous nucleation effect resulting from the branched structure and fluctuation-assisted nucleation mechanism (caused by microphase separation between the PS or PnBA rich phase and the PP rich phase) became more pronounced with increasing branch length, which facilitated the crystallization process.
基金the National Natural Science Foundation of China(Nos.21574007 and 51521062)the Fundamental Research Funds for the Central Universities(Nos.XK1802-2 and XK1802-1).
文摘The novel amphiphilic graft copolymers with hydrophilic hard polar hydroxypropyl cellulose(HPC)backbone and hydrophobic soft nonpolar polyisobutylene(PIB)branches have been successfully synthesized through nucleophilic substitution reaction of living PIB chains carrying oxonium ions with the-OH groups along HPC backbone.The PIB branch length in the graft copolymers could be designed by living cationic polymerization and the grafting density could be adjusted by PIB+/-OH molar ratio.The living PIB chains carrying oxonium ion were prepared by transformation of allyl bromide end groups in the presence of AgCI0_(4) and silver nanoparticles(3.2±0.3 nm,0.7 wt%-1.8 wt%)generated in situ from AgBr.The phase-separation morphology was formed in the graft copolymers due to their incompatibility between backbone and branches.The hydrophilicity on the surface of graft copolymer films could be turned to hydrophobicity by increasing grafting density or/and length of PIB branches.The soft PIB segments in graft copolymers provided an unique surface wa self-assembly for ant卜protein adsorption against bovine serum albumin.A small amount of Ag nanoparticles in the copolymers contributed to good antibacterial activities against Staphylococcus aureus or Escherichia coli.
文摘A couple of novel sulfobetaine copolymer is developed via Michael-type addition reaction. The comonomers, diamines and maleimide react via Michael reaction through UV irradiation using AIBN as photoinitiator producing polyamine chain. Further, sulfobetaine copolymers were obtained on treatment of the polyamine with sulfopropylating agent, 1,3-propane sultone. These novel sulfobetaine polymers were grafted on silica surface to produce responsive biocompatible surface. This easy straightforward, catalyst free facile protocol for synthesis of polymer grafted surface is useful for developing biomedical devices. Additionally, both the copolymers show fluorescence characteristics.
基金Supported by International Cooperation from Ministry of Science and Technology of China(No.2008DFA51170)
文摘Hydrophilic degraded gelatin was modified with hydrophobic poly(ε-caprolactone) (PCL) via a chemical grafting route.Firstly,PCL with one hydroxyl end group was prepared by the ring-opening polymerization of εcaprolactone (ε-CL) with tin (Ⅱ) 2-ethylhexanoate as catalyst and n-butyl alcohol as initiator.Secondly,the PCL reacted with isophorone diisocyanate (IPDI) to prepare PCL with isocyanate functional group (PCL-NCO).Hydroxylamine was used to degrade gelatin by the cleavage between asparagine and glycine residues of gelatin.PCL-NCO reacted with the hydroxyl/amino groups of degraded gelatin in a homogeneous system and yielded the PCL modified gelatin copolymers.The gelatin grafted PCL copolymers were measured by means of XRD,FTIR,DSC and 1 H NMR.The results confirmed the conjugation of PCL onto gelatin chains.The PCL modified gelatin can be used as biomaterials owing to their biocompatibility and biodegradation.
基金supported by the National Natural Science Foundation of China(Grant Nos.20990234,20925414,and 91227121)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1257)+1 种基金the Programme of Introducing Talents of Discipline to Universities,Chinaby the Tianhe No.1,China
文摘Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanome- ters, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applica- tions; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB dibloek eopolymers, junction p0int-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress.
文摘Dynamic mechanical behaviours of PVC ho-mopolymer. poly butylacryiate (PBA ) graft vinylchloride copolymers and blend of PVC and ACR have been investigated. The results reveal that there is semicompatible nature in the two phases in these materials,that the compatibility of the two phases decrease, -with the increase of crosslinking density of PBA backbone in graft copolyers. For different copolymer types-PB A graft copolymers had better compatibility of the two phases compared ivith the graft copolymers 晈ith core/shell backbone poly-
文摘Ethyl cellulose graft copolymers with block and hetero side chains, ethyl cellulose graft [polystyrene-b-poly- (ethylene glycol)] [EC-g-(PS-b-PEG)] and ethyl cellulose graft polystyrene and polyethylene glycol [EC-g-(PS-PEG )] were synthesized by atomic transfer radical polymerization (ATRP) and alkyne-azide "click" reactions and "one-pot" ATRP and "click" reactions, respectively. For the synthesis of EC-g-(PS-b-PEG), the macroinitiator for ATRP was first synthesized via the esterification of hydroxyl groups of EC with 2-bromoisobutyryl bromide to re- sult ethyl cellulose 2-bromoisobutyryl ester (EC-Br). The degree of substitution of bromide groups, which deter- mined the graft density, can be tailored by varying the feeding ratios of the hydroxyl groups to 2-bromoisobutyryl bromide. Then ATRP was carried out for preparing EC-g-PS-Br with well-defined length of PS chains. The EC-g-PS-Br copolymers were then converted to EC-g-PS-N3 and then reacted with end alkyne-functionalized PEG via click to result in EC-g-(PS-b-PEG). The EC-g-(PS-PEG) copolymers were synthesized by converting bromide groups of EC-Br to azide groups (EC-Br-N3) and then by one-pot ATRP and "click" reactions. The resultant graft copolymers were characterized by FTIR and IH NMR. The results indicate the success of the synthetic procedure of the cellulose grail copolymers with block and hetero side chains.